CMR khi \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)thì\(a+b+c=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\Leftrightarrow abc=\left(a+b+c\right)\left(ab+bc+ca\right)\)
\(\Leftrightarrow abc=a^2b+abc+a^2c+b^2a+abc+b^2c+c^2a+abc+c^2b\)
\(\Leftrightarrow a^2b+b^2a+b^2c+c^2b+a^2c+c^2a-2abc=0\)
\(\Leftrightarrow ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a^2+2ab+b^2\right)=0\)
\(\Leftrightarrow ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2=0\)
\(\Leftrightarrow\left(a+b\right)\left[ab+c^2+c\left(a+b\right)\right]=0\Leftrightarrow\left(a+b\right)\left(ab+c^2+ac+bc\right)=0\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)Chúc bạn học tốt!
Phú Quý Lê Tăng ơi! Hình như bn làm lộn dấu 1 bước phải ko? Chỗ đó hình như phải là +2ab mới đúng.
Xét \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-2\left(\frac{a+b+c}{abc}\right)}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)
\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)(đpcm)
Bài 2 :
Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)
\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\frac{a+b+c}{abc}=4\)
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot1=4\)
( Do \(a+b+c=abc\) )
\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\) (đpcm)
P/s : Cho hỏi bài 1 có a,b,c > 0 không ?
Khuyến mãi thêm bài 1 :))
Áp dụng BĐT AM-GM ta có :
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=\frac{2a}{c}\) (1)
Tương tự ta có :
\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)(2), \(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge\frac{2c}{b}\) (3)
Cộng các vế của BĐT (1) (2) và (3) và chia 2 ta có :
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
1. BĐT ban đầu
<=> \(\left(\frac{1}{3}-\frac{b}{a+3b}\right)+\left(\frac{1}{3}-\frac{c}{b+3c}\right)+\left(\frac{1}{3}-\frac{a}{c+3a}\right)\ge\frac{1}{4}\)
<=>\(\frac{a}{a+3b}+\frac{b}{b+3c}+\frac{c}{c+3a}\ge\frac{3}{4}\)
<=> \(\frac{a^2}{a^2+3ab}+\frac{b^2}{b^2+3bc}+\frac{c^2}{c^2+3ac}\ge\frac{3}{4}\)
Áp dụng BĐT buniacoxki dang phân thức
=> BĐT cần CM
<=> \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ac\right)}\ge\frac{3}{4}\)
<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng
=> BĐT được CM
2) \(a+b+c\le ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)\(\Leftrightarrow\)\(\left(a+b+c\right)^2-3\left(a+b+c\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a+b+c-3\right)\ge0\)\(\Leftrightarrow\)\(a+b+c\ge3\)
ko mất tính tổng quát giả sử \(a\ge b\ge c\)
Có: \(3\le a+b+c\le ab+bc+ca\le3a^2\)\(\Leftrightarrow\)\(3a^2\ge3\)\(\Leftrightarrow\)\(a\ge1\)
=> \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le\frac{3}{1+2a}\le1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)
\(S=ab+\frac{1}{ab}=16ab+\frac{1}{ab}-15ab\ge8-15ab\) (1)
\(\sqrt{ab}\le\frac{a+b}{2}\le\frac{1}{2}\Leftrightarrow ab\le\frac{1}{4}\Leftrightarrow-15ab\ge-\frac{15}{4}\Leftrightarrow8-15ab\ge8-\frac{15}{4}=\frac{17}{4}\)
VẬy GTNN của S 17/4 tại a = b = 1/2
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{ca+cb+c^2+ab}{abc\left(a+b+c\right)}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b\left(a+c\right)+c\left(a+c\right)\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\Rightarrow a+b=0\Rightarrow a=-b\Rightarrow a^{2009}=-b^{2009}\)
\(\frac{1}{a^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}}=\frac{1}{c^{2009}}\) (1)
\(\frac{1}{a^{2009}+b^{2009}+c^{2009}}=\frac{1}{c^{2009}}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{1}{a^{2009}}+\frac{1}{b^{2009}}+\frac{1}{c^{2009}}=\frac{1}{a^{2009}+b^{2009}+c^{2009}}\) (đpcm)
Easy!
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow abc\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0.abc\) (nhân cả hai vế với abc)
Hay \(a+b+c=0^{\left(đpcm\right)}\) (phá ngoặc,rút gọn phân số)
bạn có thể làm cẩn thận ra đc ko