K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2019

2x-6-3x+15=12-4x-18

-x+9=-6-4x

-x+4x=-9-6

3x=-15

x=-5

trước đó có dấu tương đương hay suy ra cũng được

25 tháng 1 2019

2 . ( x - 3 ) - 3 . ( x - 5 ) = 4 , ( 3 - x ) - 18

2x - 2 . 3 - 3x + 3 . 5 = 4 . 3 - 4x - 18

2x - 6 - 3x + 15 = 12 - 4x - 18

2x - 3x + 4x = 12 - 18 + 6

3x = 0

=> x = 0

Học tốt nhé bạn !

\(\frac{2}{3}\times\frac{3}{4}\times\frac{4}{5}:\frac{1}{5}\)

\(=\frac{2\times3\times4}{3\times4\times5}:\frac{1}{5}\)

\(=\frac{2}{5}:\frac{1}{5}\)

\(=\frac{2}{5}\times5\)

\(=2\)

20 tháng 7 2021

a) \(A=x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=3\)\(min_A=1\)

b) \(B=3x^2+x-2=3\left(x^2+\dfrac{1}{3}x-\dfrac{2}{3}\right)=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{36}-\dfrac{25}{36}\right)=3\left(x+\dfrac{1}{6}\right)^2-\dfrac{25}{12}\ge\dfrac{-25}{12}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{6}\)\(min_B=\dfrac{-25}{12}\)

c) \(C=\dfrac{4}{x^2}-\dfrac{3}{x}-1=\left(\dfrac{4}{x^2}-\dfrac{3}{x}+\dfrac{9}{16}\right)-\dfrac{25}{16}=\left(\dfrac{2}{x}+\dfrac{2}{3}\right)^2-\dfrac{25}{16}\ge\dfrac{-25}{16}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-3\)\(min_C=\dfrac{-25}{16}\)

d) \(D=x^2+y^2-x+3y+7=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+3y+\dfrac{9}{4}\right)+\dfrac{9}{2}=\left(x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-3}{2}\end{matrix}\right.\)\(min_D=\dfrac{9}{2}\)

31 tháng 3 2018

1,x=3 hoặc x=-2

2,x=12

3,không có x nào thỏa mãn

31 tháng 3 2018

Bài 1 : 

Ta có : 

\(\left|2x-1\right|=5\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{6}{2}\\x=\frac{-4}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)

Vậy \(x=-2\) hoặc \(x=3\)

Bài 2 : 

Đặt \(A=\frac{3x+4}{x-1}\) ta có : 

\(A=\frac{3x+4}{x-1}=\frac{3x-3+7}{x-1}=\frac{3x-3}{x-1}+\frac{7}{x-1}=\frac{3\left(x-1\right)}{x-1}+\frac{7}{x-1}=3+\frac{7}{x-1}\)

Để A là số nguyên thì \(\frac{7}{x-1}\) phải nguyên \(\Rightarrow\)\(7⋮\left(x-1\right)\)\(\Rightarrow\)\(\left(x-1\right)\inƯ\left(7\right)\)

Mà \(Ư\left(7\right)=\left\{1;-1;7;-7\right\}\)

Suy ra : 

\(x-1\)\(1\)\(-1\)\(7\)\(-7\)
\(x\)\(2\)\(0\)\(8\)\(-6\)

Vậy \(x\in\left\{-6;0;2;8\right\}\) thì \(A\inℤ\)

Chúc bạn học tốt ~ 

19 tháng 8 2017

GTNN của A:

Khi \(x< -98:A=1-x-x-98=-2x-97>99\)

Khi \(-98\le x< 1:A=1-x+x+98=99\)

Khi \(x\ge1:A=x-1+x+98=2x+97\ge99\)

Vậy GTNN của A là 99 khi \(-98\le x\le1.\)

Tượng tự với biểu thức B và C.

\(\left(2x-5\right)^{200}+|x+1|=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-5=0\\x+1=0\end{cases}}\)(vì \(\left(2x-5\right)^{200}\ge0;|x+1|\ge0\))

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\x=-1\end{cases}}\)

Vậy không có giá trị nào của x.

19 tháng 8 2017

Khi \(x< -1:B=-x-1-x+2-x+5=-3x+6>9\)

Khi \(-1\le x< 2:B=x+1-x+2-x+5=-x+8>6\)

Khi \(2\le x< 5:B=x+1+x-2-x+5=x+4\ge6\)

khi \(x\ge5:B=x+1+x-2+x-5=3x-6\ge9\)

Vậy GTNN của B là 6 khi \(2\le x< 5\)

Tìm GTNN của C tương tự.

7 tháng 8 2018

1) |3x - 3/2| - 1/4 = x - 1/2

= 3x - 3/2 - 1/4 = x - 1/2

= 3x - x = 3/2 + 1/4 - 1/2

2x = 5/4

x = 5/4 : 2

x = 5/8

7 tháng 8 2018

2) 5/3 - |1/3x + 2/3 | = 1 - x

= 5/3 - 1/3x + 2/3 = 1-x 

= -1/3x + x = -5/3 - 2/3 + 1

= 2/3x = -4/3

x = -4/3 : 2/3

x = -2

28 tháng 11 2016

a)                                                               b)

(x-140):7=3                                                    720:[41-(2x+5)]=10

x-140=21                                                       41-(2x+5)=72

x=161                                                             2x+5=(-31)

                                                                     2x=(-36)

                                                                     x=-18

10 tháng 4 2017

3/4+1/4:x=-3

1/4:x=(-3)-3/4

1/4:x=-15/4

x=-15/4.1/4

x=-15/16

đúng nha bn

10 tháng 4 2017

3/4+3/4 : x= -3 

4/4 :x =-3

1:x =-3

x= -1/3

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

28 tháng 8 2017

1/ \(x^3+2=3\sqrt[3]{3x-2}\)

Đặt \(\sqrt[3]{3x-2}=a\) thì ta có hệ

\(\hept{\begin{cases}x^3+2-3a=0\\a^3+2-3x=0\end{cases}}\)

Lấy trên - dưới ta được

\(x^3-a^3+3x-3a=0\)

\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2+3\right)=0\)

\(\Leftrightarrow x=a\)

\(\Leftrightarrow x=\sqrt[3]{3x-2}\)

\(\Leftrightarrow x^3-3x+2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

31 tháng 3 2018

\(a,\frac{62}{7}:x=\frac{29}{9}:\frac{3}{56}\)

\(\frac{62}{7}:x=\frac{1624}{27}\)

\(x=\frac{62}{7}:\frac{1624}{27}=\frac{837}{5684}\)

\(b,\frac{1}{5}:x=\frac{1}{5}-\frac{1}{7}\)

\(\frac{1}{5}:x=\frac{2}{35}\)

\(x=\frac{1}{5}:\frac{2}{35}=\frac{7}{2}\)

\(c,\frac{2}{3}.x-\frac{4}{7}=\frac{1}{7}\)

\(\frac{2}{3}.x=\frac{1}{7}+\frac{4}{7}=\frac{5}{7}\)

\(x=\frac{5}{7}:\frac{2}{3}=\frac{15}{14}\)

\(d,\frac{2}{7}-\frac{8}{9}.x=\frac{2}{3}\)

\(\frac{8}{9}.x=\frac{2}{7}-\frac{2}{3}=-\frac{8}{21}\)

\(x=-\frac{8}{21}:\frac{8}{9}=-\frac{3}{7}\)

\(e,\frac{4}{7}+\frac{5}{9}:x=\frac{1}{5}\)

\(\frac{5}{9}:x=\frac{1}{5}-\frac{4}{7}=-\frac{13}{35}\)

\(x=\frac{5}{9}:-\frac{13}{35}=\frac{175}{117}\)

\(i,\frac{2}{5}-\frac{2}{5}.x=\frac{2}{5}\)

\(\frac{2}{5}.\left(1-x\right)=\frac{2}{5}\)

\(1-x=\frac{2}{5}:\frac{2}{5}=1\)

\(x=1-1=0\)

\(g,\frac{2}{3}+\frac{1}{3}:x=-1\)

\(\frac{1}{3}:x=-1-\frac{2}{3}=-\frac{5}{3}\)

\(x=\frac{1}{3}:-\frac{5}{3}=-\frac{1}{5}\)

học tốt nha