K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lý thuyết số là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà phát triển từ những nghiên cứu của nó.Lý thuyết số có thể chia thành một vài lĩnh vực dựa theo phương pháp giải và các dạng bài toán được xem xét. (Xem Danh sách các chủ đề của lý thuyết số).Cụm từ "số học" cũng được...
Đọc tiếp

Lý thuyết số là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà phát triển từ những nghiên cứu của nó.

Lý thuyết số có thể chia thành một vài lĩnh vực dựa theo phương pháp giải và các dạng bài toán được xem xét. (Xem Danh sách các chủ đề của lý thuyết số).

Cụm từ "số học" cũng được sử dụng để nói đến lý thuyết số. Đây là cụm từ không còn được sử dụng rộng rãi nữa. Tuy nhiên, nó vẫn còn hiện diện trong tên của một số lĩnh vực toán học (hàm số học, số học đường cong elliptic, lý thuyết căn bản của số học). Việc sử dụng cụm từ số học ở đây không nên nhầm lẫn với số học sơ cấp.

Mục lục

1Các lĩnh vực

1.1Lý thuyết số sơ cấp

1.2Lý thuyết số giải tích

1.3Lý thuyết số đại số

1.4Lý thuyết số hình học

1.5Lý thuyết số tổ hợp

1.6Lý thuyết số máy tính

2Lịch sử

2.1Lý thuyết số thời kì Vedic

2.2Lý thuyết số của người Jaina

2.3Lý thuyết số Hellenistic

2.4Lý thuyết số Ấn Độ cổ điển

2.5Lý thuyết số của người Hồi giáo

2.6Lý thuyết số châu Âu ban đầu

2.7Mở đầu lý thuyết số hiện đại

2.8Lý thuyết số về số nguyên tố

2.9Các thành tựu trong thế kỉ 19

2.10Các thành tựu trong thế kỉ 20

3Danh ngôn

4Tham khảo

5Liên kết ngoài

Các lĩnh vực[sửa | sửa mã nguồn]

Lý thuyết số sơ cấp[sửa | sửa mã nguồn]

Trong lý thuyết số sơ cấp, các số nguyên được nghiên cứu mà không cần các kĩ thuật từ các lĩnh vực khác của toán học. Nó nghiên cứu các vấn đề về chia hết, cách sử dụng thuật toán Euclid để tìm ước chung lớn nhất, phân tích số nguyên thành thừa số nguyên tố, việc nghiên cứu các số hoàn thiện và đồng dư.

Rất nhiều vấn đề trong lý thuyết số có thể phát biểu dưới ngôn ngữ sơ cấp, nhưng chúng cần những nghiên cứu sâu sắc và những tiếp cận mới bên ngoài lĩnh vực lý thuyết số để giải quyết.

Một số ví dụ:

Giả thuyết Goldbach nói về việc biểu diễn các số chẵn thành tổng của hai số nguyên tố.

Giả thuyết Catalan (bây giờ là định lý Mihăilescu) nói về các lũy thừa nguyên liên tiếp.

Giả thuyết số nguyên tố sinh đôi nói rằng có vô hạn số nguyên tố sinh đôi

Giả thuyết Collazt nói về một dãy đệ quy đơn giản

Định lý lớn Fermat (nêu lên vào năm 1637, đến năm 1994 mới được chứng minh) nói rằng phương trình {\displaystyle x^{n}+y^{n}=z^{n}}📷 không có nghiệm nguyên khác không với n lớn hơn 2.

Lý thuyết về phương trình Diophantine thậm chí đã được chứng minh là không có phương pháp chung đề giải (Xem Bài toán thứ 10 của Hilbert)

Lý thuyết số giải tích[sửa | sửa mã nguồn]

Lý thuyết giải tích số sử dụng công cụ giải tích và giải tích phức để giải quyết các vần đề về số nguyên. Định lý số nguyên tố và giả thuyết Riemann là các ví dụ. Bài toán Waring(biểu diễn một số nguyên cho trước thành tổng các bình phương, lập phương, v.v...), giả thuyết số nguyên tố sinh đôi và giả thuyết Goldbach cũng đang bị tấn công bởi các phương pháp giải tích. Chứng minh về tính siêu việt của các hằng số toán học, như là π hay e, cũng được xếp vào lĩnh vực lý thuyết giải tích số. Trong khi những phát biểu về các số siêu việt dường như đã bị loại bỏ khỏi việc nghiên cứu về các số nguyên, chúng thực sự nghiên cứu giá trị của các đa thức với hệ số nguyên tại, ví dụ, e; chúng cũng liên quan mật thiết với lĩnh vực xấp xỉ Diophantine, lĩnh vực nghiên cứu một số thực cho trước có thể xấp xỉ bởi một số hữu tỉ tốt tới mức nào.

Lý thuyết số đại số[sửa | sửa mã nguồn]

Trong Lý thuyết số đại số, khái niệm của một số được mở rộng thành các số đại số, tức là các nghiệm của các đa thức với hệ số nguyên. Những thứ này bao gồm những thành phần tương tự với các số nguyên, còn gọi là số nguyên đại số. Với khái niệm này, những tính chất quen thuộc của số nguyên (như phân tích nguyên tố duy nhất) không còn đúng. Lợi thế của những công cụ lý thuyết - Lý thuyết Galois, group cohomology, class field theory, biểu diễn nhóm và hàm L - là nó cho phép lấy lại phần nào trật tự của lớp số mới.

Rất nhiều vấn đề lý thuyết số có thể được giải quyết một cách tốt nhất bởi nghiên cứu chúng theo modulo p với mọi số nguyên tố p (xem các trường hữu hạn). Đây được gọi là địa phương hóa và nó dẫn đến việc xây dựng các số p-adic; lĩnh vực nghiên cứu này được gọi là giải tích địa phương và nó bắt nguồn từ lý thuyết số đại sô.

Lý thuyết số hình học[sửa | sửa mã nguồn]

Lý thuyết số hình học (cách gọi truyền thống là (hình học của các số) kết hợp tất cả các dạng hình học. Nó bắt đầu với định lý Minkowski về các điểm nguyên trong các tập lồi và những nghiên cứu về sphere packing.

Lý thuyết số tổ hợp[sửa | sửa mã nguồn]

Lý thuyết số tổ hợp giải quyết các bài toán về lý thuyết số mà có tư tưởng tổ hợp trong công thức hoặc cách chứng minh của nó. Paul Erdős là người khởi xướng chính của ngành lý thuyết số này. Những chủ đề thông thường bao gồm hệ bao, bài toán tổng-zero, rất nhiều restricted sumset và cấp số cộng trong một tập số nguyên. Các phương pháp đại số hoặc giải tích rất mạnh trong những lĩnh vực này.

Lý thuyết số máy tính[sửa | sửa mã nguồn]

Lý thuyết số máy tính nghiên cứu các thuật toán liên quan đến lý thuyết số. Những thuật toán nhanh chóng để kiểm tra tính nguyên tố và phân tích thừa số nguyên tố có những ứng dụng quan trọng trong mã hóa.

Lịch sử[sửa | sửa mã nguồn]

Lý thuyết số thời kì Vedic[sửa | sửa mã nguồn]

Các nhà toán học Ấn Độ đã quan tâm đến việc tìm nghiệm nguyên của phương trình Diophantine từ thời kì Vedic. Những ứng dụng sớm nhất vào hình học của phương trình Diophantine có thể tìm thấy trong kinh Sulba, được viết vào khoảng giữa thế kỉ thứ 8 và thế kỉ thứ 6 trước Công nguyên. Baudhayana (năm 800 TCN) tìm thấy hai tập nghiệm nguyên dương của một hệ các phương trình Diophantine, và cũng sử dụng hệ phương trình Diophantine với tới bốn ẩn. Apastamba (năm 600) sử dụng hệ phương trình Diophantine với tới năm ẩn.

Lý thuyết số của người Jaina[sửa | sửa mã nguồn]

Ở Ấn Độ, các nhà toán học Jaina đã phát triển lý thuyết số có hệ thống đầu tiên từ thế kỉ thứ 4 trước Công Nguyên tới thế kỉ thứ 2. Văn tự Surya Prajinapti (năm 400 TCN) phân lớp tất cả các số thành ba tập: đếm được, không đếm được và vô hạn. Mỗi tập này lại được phân thành ba cấp:

Đếm được: thấp nhất, trung bình, và cao nhất.

Không đếm được: gần như không đếm được, thật sự không đếm được, và không đếm được một cách không đếm được.

Vô hạn: gần như vô hạn, thật sự vô hạn, vô hạn một cách vô hạn

Những người Jain là những người đầu tiên không chấp nhận ý tưởng các vô hạn đều như nhau. Họ nhận ra năm loại vô hạn khác nhau: vô hạn theo một hoặc hai hướng (một chiều), vô hạn theo diện tích (hai chiều), vô hạn mọi nơi (ba chiều), và vô hạn liên tục (vô số chiều).

Số đếm được cao nhất N của người Jain tương ứng với khái niệm hiện đại aleph-không {\displaystyle \aleph _{0}}📷 (cardinal number của tập vô hạn các số nguyên 1,2,...), the smallest cardinal transfinite number. Người Jain cũng định nghĩa toàn bộ hệ thống các cardinal number, trong đó {\displaystyle \aleph _{0}}📷 là nhỏ nhất.

Trong công trình của người Jain về lý thuyết tập hợp, họ phân biệt hai loại transfinite number cơ bản. Ở cả lĩnh vực vật lý và bản thể học (ontology), sự khác nhau được tạo ra giữa asmkhyata và ananata, giữa vô hạn bị chặn ngặt và vô hạn bị chặn lỏng.

Lý thuyết số Hellenistic[sửa | sửa mã nguồn]

Lý thuyết số là một đề tài ưa thích của các nhà toán học Hellenistic ở Alexandria, Ai Cập từ thế kỉ thứ 3 sau Công Nguyên. Họ đã nhận thức được khái niệm phương trình Diophantine trong rất nhiều trường hợp đặc biệt. Nhà toán học Hellenistic đầu tiên nghiên cứu những phương trình này là Diophantus.

Diophantus cũng đã tìm kiếm một phương pháp để tìm nghiệm nguyên của các phương trình vô định tuyến tính, những phương trình mà thiếu điều kiện đủ để có một tập duy nhất các nghiệm phân biệt. Phương trình {\displaystyle x+y=5}📷 là một phương trình như vậy. Diophantus đã khám phá ra nhiều phương trình vô định có thể biến đổi thành các dạng đã biết mặc dù thậm chí còn không biết được nghiệm cụ thể.

Lý thuyết số Ấn Độ cổ điển[sửa | sửa mã nguồn]

Phương trình Diophantine đã được nghiên cứu một cách sâu sắc bởi các nhà toán học Ân Độ trung cổ. Họ là những người đầu tiên nghiên cứu một cách có hệ thống các phương pháp tìm nghiệm nguyên của phương trình Diophantine. Aryabhata (499) là người đầu tiên tìm ra dạng nghiệm tổng quát của phương trình Diophantine tuyến tính {\displaystyle ay+bx=c}📷, được ghi trong cuốn Aryabhatiya của ông. Thuật toán kuttaka này được xem là một trong những cống hiến quan trọng nhất của Aryabhata trong toán học lý thuyết, đó là tìm nghiệm của phương trình Diophantine bằng liên phân số. Aryabhata đã dùng kĩ thuật này để tìm nghiệm nguyên của các hệ phương trình Diophantine, một bài toán có ứng dụng quan trọng trong thiên văn học. Ông cũng đã tìm ra nghiệm tổng quát đối với phương trình tuyến tính vô định bằng phương pháp này.

Brahmagupta vào năm 628 đã nắm được những phương trình Diophantine phức tạp hơn. Ông sử dụng phương pháp chakravala để giải phương trình Diophantine bậc hai, bao gồm cả các dạng của phương trình Pell, như là {\displaystyle 61x^{2}+1=y^{2}}📷. Cuốn Brahma Sphuta Siddhanta của ông đã được dịch sang tiếng Ả Rập vào năm 773 và sau đó được dịch sang tiếng Latin vào năm 1126. Phương trình {\displaystyle 61x^{2}+1=y^{2}}📷 sau đó đã được chuyển thành một bài toán vào năm 1657 bởi nhà toán học người Pháp Pierre de Fermat. Leonhard Euler hơn 70 năm sau đã tìm được nghiệm tổng quát đối với trường hợp riêng này của phương trình Pell, trong khi nghiệm tổng quát của phương trình Pell đã được tìm ra hơn 100 năm sau đó bởi Joseph Louis Lagrange vào 1767. Trong khi đó, nhiều thế kỉ trước, nghiệm tổng quát của phương trình Pell đã được ghi lại bởi Bhaskara II vào 1150, sử dụng một dạng khác của phương pháp chakravala. Ông cũng đã sử dụng nó để tìm ra nghiệm tổng quát đối với các phương trình vô định bậc hai và phương trình Diophantine bậc hai khác. Phương pháp chakravala của Bhaskara dùng để tìm nghiệm phương trình Pell đơn giản hơn nhiều so với phương pháp mà Lagrange sử dụng 600 năm sau đó. Bhaskara cũng đã tìm được nghiệm của các phương trình vô định bậc hai, bậc ba, bốn và cao hơn. Narayana Pandit đã cải tiến phương pháp chakravala và tìm thêm được các nghiệm tổng quát hơn đối với các phương trình vô định bậc hai và cao hơn khác.

Lý thuyết số của người Hồi giáo[sửa | sửa mã nguồn]

Từ thế kỉ 9, các nhà toán học Hồi giáo đã rất quan tâm đến lý thuyết số. Một trong những nhà toán học đầu tiên này là nhà toán học Ả Rập Thabit ibn Qurra, người đã khám phá ra một định lý cho phép tìm các cặp số bạn bè, tức là các số mà tổng các ước thực sự của số này bằng số kia. Vào thế kỉ 10, Al-Baghdadi đã nhìn vào một ít biến đổi trong định lý của Thabit ibn Qurra.

Vào thế kỉ 10, al-Haitham có thể là người đầu tiên phân loại các số hoàn hảo chẵn (là các số mà tổng các ước thực sự của nó bằng chính nó) thành các số có dạng {\displaystyle 2^{k-1}(2^{k}-1)}📷trong đó {\displaystyle 2^{k}-1}📷 là số nguyên tố. Al-Haytham cũng là người đầu tiên phát biểu định lý Wilson (nói rằng p là số nguyên tố thì {\displaystyle 1+(p-1)!}📷 chia hết cho p). Hiện không rõ ông ta có biết cách chứng minh nó không. Định lý có tên là định lý Wilson vì căn cứ theo một lời chú thích của Edward Waring vào năm 1770 rằng John Wilson là người đầu tiên chú ý đến kết quả này. Không có bằng chứng nào chứng tỏ John Wilson đã biết cách chứng minh và gần như hiển nhiên là Waring cũng không. Lagrange đã đưa ra chứng minh đầu tiên vào 1771.

Các số bạn bè đóng vai trò quan trọng trong toán học của người Hồi giáo. Vào thế kỉ 13, nhà toán học Ba Tư Al-Farisi đã đưa ra một chứng minh mới cho định lý của Thabit ibn Qurra, giới thiệu một ý tưởng mới rất quan trọng liên quan đến phương pháp phân tích thừa số và tổ hợp. Ông cũng đưa ra cặp số bạn bè 17296, 18416 mà người ta vẫn cho là của Euler, nhưng chúng tao biết rằng những số này còn được biết đến sớm hơn cả al-Farisi, có thể bởi chính Thabit ibn Qurra. Vào thế kỉ 17, Muhammad Baqir Yazdi đưa ra cặp số bạn bè 9.363.584 và 9.437.056 rất nhiều năm trước khi Euler đưa ra.

Lý thuyết số châu Âu ban đầu[sửa | sửa mã nguồn]

Lý thuyết số bắt đầu ở Châu Âu vào thế kỉ 16 và 17, với François Viète, Bachet de Meziriac, và đặc biệt là Fermat, mà phương pháp lùi vô hạn của ông là chứng minh tổng quát đầu tiên của phương trình Diophantine. Định lý lớn Fermat được nêu lên như là một bài toán vào năm 1637, và không có lời giải cho đến năm 1994. Fermat cũng nêu lên bài toán {\displaystyle 61x^{2}+1=y^{2}}📷 vào năm 1657.

Vào thế kỉ 18, Euler và Lagrange đã có những cống hiến quan trọng cho lý thuyết số. Euler đã làm một vài công trình về lý thuyết giải tích số, và tình được một nghiệm tổng quát của phương trình {\displaystyle 61x^{2}+1=y^{2}}📷, mà Fermat nêu thành bài toán. Lagrange đã tìm được một nghiệm của phương trình Pell tổng quát hơn. Euler và Lagrange đã giải những phương trình Pell này bằng phương pháp liên phân số, mặc dù nó còn khó hơn phương pháp chakravala của Ấn Độ.

Mở đầu lý thuyết số hiện đại[sửa | sửa mã nguồn]

Khoảng đầu thế kỉ 19 các cuốn sách của Legendre (1798), và Gauss kết hợp thành những lý thuyết có hệ thống đầu tiên ở châu Âu. Cuốn Disquisitiones Arithmeticae (1801) có thể nói là đã mở đầu lý thuyết số hiện đại.

Sự hình thành lý thuyết đồng dư bắt đầu với cuốn Disquisitiones của Gauss. Ông giới thiệu ký hiệu

{\displaystyle a\equiv b{\pmod {c}},}📷

và đã khám phá ra hầu hết trong lĩnh vực này. Chebyshev đã xuất bản vào năm 1847 một công trình bằng tiếng Nga về chủ đề này, và ở Pháp Serret đã phổ biến nó.

Bên cạnh những công trình tổng kết trước đó, Legendre đã phát biểu luật tương hỗ bậc hai. Định lý này, được khám phá ra bởi qui nạp và được diễn đạt bởi Euler, đã được chứng minh lần đầu tiên bởi Legendre trong cuốn Théorie des Nombres của ông (1798) trong những trường hợp đặc biệt. Độc lập với Euler và Legendre, Gauss đã khám phá ra định luật này vào khoảng năm 1795, và là người đầu tiên đưa ra chứng minh tổng quát. Những người cũng có cống hiến quan trọng: Cauchy; Dirichlet với cuốn Vorlesungen über Zahlentheorie kinh điển; Jacobi, người đã đưa ra ký hiệu Jacobi; Liouville, Zeller (?), Eisenstein, Kummer, và Kronecker. Lý thuyết này đã được mở rộng để bao gồm biquadratic reciprocity (Gauss, Jacobi những người đầu tiên chứng minh luật tương hỗ bậc ba, và Kummer).

Gauss cũng đã đưa ra biểu diễn các số thành các dạng bậc hai cơ số hai.

Lý thuyết số về số nguyên tố[sửa | sửa mã nguồn]

Một chủ đề lớn và lặp đi lặp lại trong lý thuyết số đó là nghiên cứu về sự phân bố số nguyên tố. Carl Fiedrich Gauss đã dự đoán kết quả của định lý số nguyên tố khi còn là học sinh trung học.

Chebyshev (1850) đưa ra các chặn cho số số nguyên tố giữa hai giới hạn cho trước. Riemann giới thiệu giải tích phức thành lý thuyết về hàm zeta Riemann. Điều này đã dẫn đến mối quan hệ giữa các số không của hàm zeta và sự phân bố số nguyên tố, thậm chí dẫn tới một chứng minh cho định lý số về số nguyên tố độc lập với Hadamard và de la Vallée Poussin vào năm 1896. Tuy nhiên, một chứng minh sơ cấp đã được đưa ra sau đó bởi Paul Erdős và Atle Selberg vào năm 1949. Ở đây sơ cấp nghĩa là không sử dụng kĩ thuật giải tích phức; tuy nhiên chứng minh vẫn rất đặc biệt và rất khó. Giả thuyết Riemann, đưa ra những thông tin chính xác hơn, vẫn còn là một câu hỏi mở.

Các thành tựu trong thế kỉ 19[sửa | sửa mã nguồn]

Cauchy, Pointsot (1845), Lebesgue (1859, 1868) và đặc biệt là Hermite đã có những cống hiến đối với lĩnh vực này. Trong lý thuyết về các ternary form Eisenstein đã trở thành người đi đầu, và với ông và H. J. S. Smith đó đúng là một bước tiến quan trọng trong lý thuyết về các dạng. Smith đã đưa ra một sự phân loại hoàn chỉnh về các ternary form bậc hai, và mở rộng những nghiên cứu của Gauss về các dạng bậc hai thực (real quadratic form) thành các dạng phức (complex form). Những nghiên cứu về biểu diễn các số thành tổng của 4, 5, 6, 6, 8 bình phương đã được phát triển bởi Eisenstein và lý thuyết này đã được hoàn chỉnh bởi Smith.

Dirichlet là người đầu tiên thuyết trình về lĩnh vực này ở một trường đại học ở Đức. Một trong những cống hiến của ông là sự mở rộng của Định lý lớn Fermat:

{\displaystyle x^{n}+y^{n}\neq z^{n},(x,y,z\neq 0,n>2)}📷

mà Euler và Legendre đã chứng minh cho n = 3, 4 (và từ đó suy ra cho các bội của 3 và 4). Dirichlet đã chỉ ra rằng:{\displaystyle x^{5}+y^{5}\neq az^{5}}📷. Một số nhà toán học Pháp là Borel, Poincaré, những hồi ký của họ rất lớn và có giá trị; Tannery và Stieltjes. Một số người có những cống hiến hàng đầu ở Đức là Kronecker, Kummer, Schering, Bachmann, và Dedekind. Ở Austria cuốn Vorlesungen über allgemeine Arithmetik của Stolz (1885-86) và ở Anh cuốn Lý thuyết số của Mathew (Phần I, 1892) là các công trình tổng quát rất có giá trị. Genocchi, Sylvester, và J. W. L. Glaisher cũng đã có những cống hiến cho lý thuyết này.

Các thành tựu trong thế kỉ 20[sửa | sửa mã nguồn]

Những nhà toán học lớn trong lý thuyết số thế kỉ 20 bao gồm Paul Erdős, Gerd Faltings, G. H. Hardy, Edmund Landau, John Edensor Littlewood, Srinivasa Ramanujan và André Weil.

Các cột mốc trong lý thuyết số thế kỉ 20 bao gồm việc chứng minh Định lý lớn Fermat bởi Andrew Wiles vào năm 1994 và chứng minh Giả thuyết Taniyama–Shimura vào năm 1999

Danh ngôn[sửa | sửa mã nguồn]

Toán học là nữ hoàng của các khoa học và lý thuyết số là nữ hoàng của toán học. — Gauss

Chúa sinh ra các số nguyên, và phần việc còn lại là của con người. — Kronecker

Tôi biết các con số rất đẹp đẽ. Nếu chúng không đẹp, thì chẳng có thứ gì đẹp.— Erdős

0
Lôgic toán là một ngành con của toán học có liên hệ gần gũi với cơ sở toán học, khoa học máy tính lý thuyết, logic triết học. Ngành này bao gồm cả hai phần: Nghiên cứu toán học về logic và những ứng dụng của logic hình thức trong các ngành khác của toán học. Các chủ đề thống nhất trong logic toán học bao gồm các nghiên cứu về sức mạnh ý nghĩa của các hệ thống hình thức và sức mạnh...
Đọc tiếp

Lôgic toán là một ngành con của toán học có liên hệ gần gũi với cơ sở toán học, khoa học máy tính lý thuyết, logic triết học. Ngành này bao gồm cả hai phần: Nghiên cứu toán học về logic và những ứng dụng của logic hình thức trong các ngành khác của toán học. Các chủ đề thống nhất trong logic toán học bao gồm các nghiên cứu về sức mạnh ý nghĩa của các hệ thống hình thức và sức mạnh suy diễn của hệ thống chứng minh chính thức.

Ngành này thường được chia thành các lĩnh vực con như lý thuyết mô hình (model theory), lý thuyết chứng minh (proof theory), lý thuyết tập hợp và lý thuyết đệ quy (recursion theory). Nghiên cứu về lôgic toán thường đóng vai trò quan trọng trong ngành cơ sở toán học (foundations of mathematics).

Các tên gọi cũ của lôgic toán là lôgic ký hiệu (để đối lập với lôgic triết học) hay mêta toán học.

Lôgic toán không phải là lôgic của toán học mà là toán học của lôgic. Ngành này bao gồm những phần của lôgic mà có thể được mô hình hóa và nghiên cứu bằng toán học. Nó cũng bao gồm những lĩnh vực thuần túy toán học như lý thuyết mô hình và lý thuyết đệ quy, trong đó, khả năng định nghĩa là trung tâm của vấn đề được quan tâm.logic toán học thể hiện ở cách làm bài. Một bài toán được coi là lôgic thì phải đảm bảo sự chặt chẽ, cách lập luận hợp lý và tuân thủ theo từng bước của bài toán.

0
Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số),[2] cấu trúc,[3] không gian, và sự thay đổi.[4][5][6]Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học.[7][8]Các nhà toán học tìm kiếm các mô thức[9][10] và sử dụng chúng để tạo ra những giả thuyết mới. Họ lý giải tính đúng đắn hay sai lầm của các giả...
Đọc tiếp

Toán học là ngành nghiên cứu trừu tượng về những chủ đề như: lượng (các con số),[2] cấu trúc,[3] không gian, và sự thay đổi.[4][5][6]Các nhà toán học và triết học có nhiều quan điểm khác nhau về định nghĩa và phạm vi của toán học.[7][8]

Các nhà toán học tìm kiếm các mô thức[9][10] và sử dụng chúng để tạo ra những giả thuyết mới. Họ lý giải tính đúng đắn hay sai lầm của các giả thuyết bằng các chứng minh toán học. Khi những cấu trúc toán học là mô hình tốt cho hiện thực, lúc đó suy luận toán học có thể cung cấp sự hiểu biết sâu sắc hay những tiên đoán về tự nhiên. Thông qua việc sử dụng những phương pháp trừu tượng và lôgic, toán học đã phát triển từ việc đếm, tính toán, đo lường, và nghiên cứu có hệ thống những hình dạng và chuyển động của các đối tượng vật lý. Con người đã ứng dụng toán học trong đời sống từ xa xưa. Việc tìm lời giải cho những bài toán có thể mất hàng năm, hay thậm chí hàng thế kỷ.[11]

Những lập luận chặt chẽ xuất hiện trước tiên trong nền toán học Hy Lạp cổ đại, đáng chú ý nhất là trong tác phẩm Cơ sở của Euclid. Kể từ những công trình tiên phong của Giuseppe Peano (1858–1932), David Hilbert (1862–1943), và của những nhà toán học khác trong thế kỷ 19 về các hệ thống tiên đề, nghiên cứu toán học trở thành việc thiết lập chân lý thông qua suy luận lôgic chặt chẽ từ những tiên đề và định nghĩa thích hợp. Toán học phát triển tương đối chậm cho tới thời Phục hưng, khi sự tương tác giữa những phát minh toán học với những phát kiến khoa học mới đã dẫn đến sự gia tăng nhanh chóng những phát minh toán học vẫn tiếp tục cho đến ngày nay.[12]

Toán học được sử dụng trên khắp thế giới như một công cụ thiết yếu trong nhiều lĩnh vực, bao gồm khoa học, kỹ thuật, y học, và tài chính. Toán học ứng dụng, một nhánh toán học liên quan đến việc ứng dụng kiến thức toán học vào những lĩnh vực khác, thúc đẩy và sử dụng những phát minh toán học mới, từ đó đã dẫn đến việc phát triển nên những ngành toán hoàn toàn mới, chẳng hạn như thống kê và lý thuyết trò chơi. Các nhà toán học cũng dành thời gian cho toán học thuần túy, hay toán học vị toán học. Không có biên giới rõ ràng giữa toán học thuần túy và toán học ứng dụng, và những ứng dụng thực tiễn thường được khám phá từ những gì ban đầu được xem là toán học thuần túy.[13]

Mục lục

1Lịch sử

2Cảm hứng, thuần túy ứng dụng, và vẻ đẹp

3Ký hiệu, ngôn ngữ, tính chặt chẽ

4Các lĩnh vực toán học

4.1Nền tảng và triết học

4.2Toán học thuần túy

4.2.1Lượng

4.2.2Cấu trúc

4.2.3Không gian

4.2.4Sự thay đổi

4.3Toán học ứng dụng

4.3.1Thống kê và những lĩnh vực liên quan

4.3.2Toán học tính toán

5Giải thưởng toán học và những bài toán chưa giải được

6Mối quan hệ giữa toán học và khoa học

7Xem thêm

8Chú thích

9Tham khảo

10Liên kết ngoài

Lịch sử[sửa | sửa mã nguồn]

📷Nhà toán học Hy Lạp Pythagoras (khoảng 570–495 trước Tây lịch), được coi là đã phát minh ra định lý Pythagore.Bài chi tiết: Lịch sử toán học📷Nhà toán học Ba Tư Al-Khwarizmi (Khoảng 780-850 TCN), người phát minh ra Đại số.

Từ "mathematics" trong tiếng Anh bắt nguồn từ μάθημα (máthēma) trong tiếng Hy Lạp cổ, có nghĩa là "thứ học được",[14] "những gì người ta cần biết," và như vậy cũng có nghĩa là "học" và "khoa học"; còn trong tiếng Hy Lạp hiện đại thì nó chỉ có nghĩa là "bài học." Từ máthēma bắt nguồn từ μανθάνω (manthano), từ tương đương trong tiếng Hy Lạp hiện đại là μαθαίνω (mathaino), cả hai đều có nghĩa là "học." Trong tiếng Việt, "toán" có nghĩa là tính; "toán học" là môn học về toán số.[15] Trong các ngôn ngữ sử dụng từ vựng gốc Hán khác, môn học này lại được gọi là số học.

Sự tiến hóa của toán học có thể nhận thấy qua một loạt gia tăng không ngừng về những phép trừu tượng, hay qua sự mở rộng của nội dung ngành học. Phép trừu tượng đầu tiên, mà nhiều loài động vật có được,[16] có lẽ là về các con số, với nhận thức rằng, chẳng hạn, một nhóm hai quả táo và một nhóm hai quả cam có cái gì đó chung, ở đây là số lượng quả trong mỗi nhóm.

Các bằng chứng khảo cổ học cho thấy, ngoài việc biết đếm những vật thể vật lý, con người thời tiền sử có thể cũng đã biết đếm những đại lượng trừu tượng như thời gian - ngày, mùa, và năm.[17]

Đến khoảng năm 3000 trước Tây lịch thì toán học phức tạp hơn mới xuất hiện, khi người Babylon và người Ai Cập bắt đầu sử dụng số học, đại số, và hình học trong việc tính thuế và những tính toán tài chính khác, trong xây dựng, và trong quan sát thiên văn.[18] Toán học được sử dụng sớm nhất trong thương mại, đo đạc đất đai, hội họa, dệt, và trong việc ghi nhớ thời gian.

Các phép tính số học căn bản trong toán học Babylon (cộng, trừ, nhân, và chia) xuất hiện đầu tiên trong các tài liệu khảo cổ. Giữa năm 600 đến 300 trước Tây lịch, người Hy Lạp cổ đã bắt đầu nghiên cứu một cách có hệ thống về toán học như một ngành học riêng, hình thành nên toán học Hy Lạp.[19] Kể từ đó toán học đã phát triển vượt bậc; sự tương tác giữa toán học và khoa học đã đem lại nhiều thành quả và lợi ích cho cả hai. Ngày nay, những phát minh toán học mới vẫn tiếp tục xuất hiện.

Cảm hứng, thuần túy ứng dụng, và vẻ đẹp[sửa | sửa mã nguồn]

Bài chi tiết: Vẻ đẹp của toán học📷Isaac Newton (1643–1727), một trong những người phát minh ra vi tích phân.

Toán học nảy sinh ra từ nhiều kiểu bài toán khác nhau. Trước hết là những bài toán trong thương mại, đo đạc đất đai, kiến trúc, và sau này là thiên văn học; ngày nay, tất cả các ngành khoa học đều gợi ý những bài toán để các nhà toán học nghiên cứu, ngoài ra còn nhiều bài toán nảy sinh từ chính bản thân ngành toán. Chẳng hạn, nhà vật lý Richard Feynman đã phát minh ra tích phân lộ trình (path integral) cho cơ học lượng tử bằng cách kết hợp suy luận toán học với sự hiểu biết sâu sắc về mặt vật lý, và lý thuyết dây - một lý thuyết khoa học vẫn đang trong giai đoạn hình thành với cố gắng thống nhất tất cả các tương tác cơ bản trong tự nhiên - tiếp tục gợi hứng cho những lý thuyết toán học mới.[20] Một số lý thuyết toán học chỉ có ích trong lĩnh vực đã giúp tạo ra chúng, và được áp dụng để giải các bài toán khác trong lĩnh vực đó. Nhưng thường thì toán học sinh ra trong một lĩnh vực có thể hữu ích trong nhiều lĩnh vực, và đóng góp vào kho tàng các khái niệm toán học.

Các nhà toán học phân biệt ra hai ngành toán học thuần túy và toán học ứng dụng. Tuy vậy các chủ đề toán học thuần túy thường tìm thấy một số ứng dụng, chẳng hạn như lý thuyết số trong ngành mật mã học. Việc ngay cả toán học "thuần túy nhất" hóa ra cũng có ứng dụng thực tế chính là điều mà Eugene Wigner gọi là "sự hữu hiệu đến mức khó tin của toán học".[21] Giống như trong hầu hết các ngành học thuật, sự bùng nổ tri thức trong thời đại khoa học đã dẫn đến sự chuyên môn hóa: hiện nay có hàng trăm lĩnh vực toán học chuyên biệt và bảng phân loại các chủ đề toán học đã dài tới 46 trang.[22] Một vài lĩnh vực toán học ứng dụng đã nhập vào những lĩnh vực liên quan nằm ngoài toán học và trở thành những ngành riêng, trong đó có xác suất, vận trù học, và khoa học máy tính.

Những ai yêu thích ngành toán thường thấy toán học có một vẻ đẹp nhất định. Nhiều nhà toán học nói về "sự thanh lịch" của toán học, tính thẩm mỹ nội tại và vẻ đẹp bên trong của nó. Họ coi trọng sự giản đơn và tính tổng quát. Vẻ đẹp ẩn chứa cả bên trong những chứng minh toán học đơn giản và gọn nhẹ, chẳng hạn chứng minh của Euclid cho thấy có vô hạn số nguyên tố, và trong những phương pháp số giúp đẩy nhanh các phép tính toán, như phép biến đổi Fourier nhanh. Trong cuốn sách Lời bào chữa của một nhà toán học (A Mathematician's Apology) của mình, G. H. Hardy tin rằng chính những lý do về mặt thẩm mỹ này đủ để biện minh cho việc nghiên cứu toán học thuần túy. Ông nhận thấy những tiêu chuẩn sau đây đóng góp vào một vẻ đẹp toán học: tầm quan trọng, tính không lường trước được, tính không thể tránh được, và sự ngắn gọn.[23] Sự phổ biến của toán học vì mục đích giải trí là một dấu hiệu khác cho thấy nhiều người tìm thấy sự sảng khoái trong việc giải toán...

Ký hiệu, ngôn ngữ, tính chặt chẽ[sửa | sửa mã nguồn]

Bài chi tiết: Danh sách ký hiệu toán học📷Leonhard Euler, người tạo ra và phổ biến hầu hết các ký hiệu toán học được dùng ngày nay.

Hầu hết các ký hiệu toán học đang dùng ngày nay chỉ mới được phát minh vào thế kỷ 16.[24] Trước đó, toán học được viết ra bằng chữ, quá trình nhọc nhằn này đã cản trở sự phát triển của toán học.[25] Euler (1707–1783) là người tạo ra nhiều trong số những ký hiệu đang được dùng ngày nay. Ký hiệu hiện đại làm cho toán học trở nên dễ hơn đối với chuyên gia toán học, nhưng người mới bắt đầu học toán thường thấy nản lòng. Các ký hiệu cực kỳ ngắn gọn: một vài biểu tượng chứa đựng rất nhiều thông tin. Giống ký hiệu âm nhạc, ký hiệu toán học hiện đại có cú pháp chặt chẽ và chứa đựng thông tin khó có thể viết theo một cách khác đi.

Ngôn ngữ toán học có thể khó hiểu đối với người mới bắt đầu. Những từ như hoặc và chỉ có nghĩa chính xác hơn so với trong lời nói hàng ngày. Ngoài ra, những từ như mở và trường đã được cho những nghĩa riêng trong toán học. Những thuật ngữ mang tính kỹ thuật như phép đồng phôi và khả tích có nghĩa chính xác trong toán học. Thêm vào đó là những cụm từ như nếu và chỉ nếu nằm trong thuật ngữ chuyên ngành toán học. Có lý do tại sao cần có ký hiệu đặc biệt và vốn từ vựng chuyên ngành: toán học cần sự chính xác hơn lời nói thường ngày. Các nhà toán học gọi sự chính xác này của ngôn ngữ và logic là "tính chặt chẽ."

Các lĩnh vực toán học[sửa | sửa mã nguồn]

Bài chi tiết: Các lĩnh vực toán học

Nói chung toán học có thể được chia thành các ngành học về lượng, cấu trúc, không gian, và sự thay đổi (tức là số học, đại số, hình học, và giải tích). Ngoài những mối quan tâm chính này, toán học còn có những lĩnh vực khác khảo sát mối quan hệ giữa toán học và những ngành khác, như với logic và lý thuyết tập hợp, toán học thực nghiệm trong những ngành khoa học khác nhau (toán học ứng dụng), và gần đây hơn là sự nghiên cứu chặt chẽ về tính bất định.

Nền tảng và triết học[sửa | sửa mã nguồn]

📷Kurt Gödel là một trong những nhà logic toán học lớn, với các định lý bất toàn.

Để làm rõ nền tảng toán học, lĩnh vực logic toán học và lý thuyết tập hợp đã được phát triển. Logic toán học bao gồm nghiên cứu toán học về logic và ứng dụng của logic hình thức trong những lĩnh vực toán học khác. Lý thuyết tập hợp là một nhánh toán học nghiên cứu các tập hợp hay tập hợp những đối tượng. Lý thuyết phạm trù, liên quan đến việc xử lý các cấu trúc và mối quan hệ giữa chúng bằng phương pháp trừu tượng, vẫn đang tiếp tục phát triển. Cụm từ "khủng hoảng nền tảng" nói đến công cuộc tìm kiếm một nền tảng toán học chặt chẽ diễn ra từ khoảng năm 1900 đến 1930.[26] Một số bất đồng về nền tảng toán học vẫn còn tồn tại cho đến ngày nay. Cuộc khủng hoảng nền tảng nổi lên từ một số tranh cãi thời đó, trong đó có những tranh cãi liên quan đến lý thuyết tập hợp của Cantor và cuộc tranh cãi giữa Brouwer và Hilbert.

Khoa học máy tính lý thuyết bao gồm lý thuyết khả tính (computability theory), lý thuyết độ phức tạp tính toán, và lý thuyết thông tin. Lý thuyết khả tính khảo sát những giới hạn của những mô hình lý thuyết khác nhau về máy tính, bao gồm mô hình máy Turing nổi tiếng. Lý thuyết độ phức tạp nghiên cứu khả năng có thể giải được bằng máy tính; một số bài toán, mặc dù về lý thuyết có thể giải được bằng máy tính, cần thời gian hay không gian tính toán quá lớn, làm cho việc tìm lời giải trong thực tế gần như không thể, ngay cả với sự tiến bộ nhanh chóng của phần cứng máy tính. Một ví dụ là bài toán nổi tiếng "P = NP?".[27] Cuối cùng, lý thuyết thông tin quan tâm đến khối lượng dữ liệu có thể lưu trữ được trong một môi trường lưu trữ nhất định, và do đó liên quan đến những khái niệm như nén dữ liệu và entropy thông tin.

{\displaystyle p\Rightarrow q\,}📷📷📷📷Logic toán họcLý thuyết tập hợpLý thuyết phạm trùLý thuyết tính toán

Toán học thuần túy[sửa | sửa mã nguồn]

Lượng[sửa | sửa mã nguồn]

Việc nghiên cứu về lượng (quantity) bắt đầu với các con số, trước hết với số tự nhiên và số nguyên và các phép biến đổi số học, nói đến trong lĩnh vực số học. Những tính chất sâu hơn về các số nguyên được nghiên cứu trong lý thuyết số, trong đó có định lý lớn Fermat nổi tiếng. Trong lý thuyết số, giả thiết số nguyên tố sinh đôi và giả thiết Goldbach là hai bài toán chưa giải được.

Khi hệ thống số được phát triển thêm, các số nguyên được xem như là tập con của các số hữu tỉ. Các số này lại được bao gồm trong số thực vốn được dùng để thể hiện những đại lượng liên tục. Số thực được tổng quát hóa thành số phức. Đây là những bước đầu tiên trong phân bố các số, sau đó thì có các quaternion (một sự mở rộng của số phức) và octonion. Việc xem xét các số tự nhiên cũng dẫn đến các số vô hạn (transfinite numbers), từ đó chính thức hóa khái niệm "vô hạn". Một lĩnh vực nghiên cứu khác là kích cỡ (size), từ đó sinh ra số đếm (cardinal numbers) và rồi một khái niệm khác về vô hạn: số aleph, cho phép thực hiện so sánh có ý nghĩa kích cỡ của các tập hợp lớn vô hạn.

{\displaystyle 1,2,3,\ldots \!}📷{\displaystyle \ldots ,-2,-1,0,1,2\,\ldots \!}📷{\displaystyle -2,{\frac {2}{3}},1.21\,\!}📷{\displaystyle -e,{\sqrt {2}},3,\pi \,\!}📷{\displaystyle 2,i,-2+3i,2e^{i{\frac {4\pi }{3}}}\,\!}📷Số tự nhiênSố nguyênSố hữu tỉSố thựcSố phức

Cấu trúc[sửa | sửa mã nguồn]

Nhiều đối tượng toán học, chẳng hạn tập hợp những con số và những hàm số, thể hiện cấu trúc nội tại toát ra từ những phép biến đổi toán học hay những mối quan hệ được xác định trên tập hợp. Toán học từ đó nghiên cứu tính chất của những tập hợp có thể được diễn tả dưới dạng cấu trúc đó; chẳng hạn lý thuyết số nghiên cứu tính chất của tập hợp những số nguyên có thể được diễn tả dưới dạng những phép biến đổi số học. Ngoài ra, thường thì những tập hợp có cấu trúc (hay những cấu trúc) khác nhau đó thể hiện những tính chất giống nhau, khiến người ta có thể xây dựng nên những tiên đề cho một lớp cấu trúc, rồi sau đó nghiên cứu đồng loạt toàn bộ lớp cấu trúc thỏa mãn những tiên đề này. Do đó người ta có thể nghiên cứu các nhóm, vành, trường, và những hệ phức tạp khác; những nghiên cứu như vậy (về những cấu trúc được xác định bởi những phép biến đổi đại số) tạo thành lĩnh vực đại số trừu tượng. Với mức độ tổng quát cao của mình, đại số trừu tượng thường có thể được áp dụng vào những bài toán dường như không liên quan gì đến nhau. Một ví dụ về lý thuyết đại số là đại số tuyến tính, lĩnh vực nghiên cứu về các không gian vectơ, ở đó những yếu tố cấu thành nó gọi là vectơ có cả lượng và hướng và chúng có thể được dùng để mô phỏng các điểm (hay mối quan hệ giữa các điểm) trong không gian. Đây là một ví dụ về những hiện tượng bắt nguồn từ những lĩnh vực hình học và đại sốban đầu không liên quan gì với nhau nhưng lại tương tác rất mạnh với nhau trong toán học hiện đại. Toán học tổ hợp nghiên cứu những cách tính số lượng những đối tượng có thể xếp được vào trong một cấu trúc nhất định.

{\displaystyle {\begin{matrix}(1,2,3)&(1,3,2)\\(2,1,3)&(2,3,1)\\(3,1,2)&(3,2,1)\end{matrix}}}📷📷📷📷📷📷Toán học tổ hợpLý thuyết sốLý thuyết nhómLý thuyết đồ thịLý thuyết trật tựĐại số

Không gian[sửa | sửa mã nguồn]

Việc nghiên cứu không gian bắt đầu với hình học - cụ thể là hình học Euclid. Lượng giác là một lĩnh vực toán học nghiên cứu về mối quan hệ giữa các cạnh và góc của tam giác và với các hàm lượng giác; nó kết hợp không gian và các con số, và bao gồm định lý Pythagore nổi tiếng. Ngành học hiện đại về không gian tổng quát hóa những ý tưởng này để bao gồm hình học nhiều chiều hơn, hình học phi Euclide (đóng vai trò quan trọng trong lý thuyết tương đối tổng quát), và tô pô. Cả lượng và không gian đều đóng vai trò trong hình học giải tích, hình học vi phân, và hình học đại số. Hình học lồi và hình học rời rạc trước đây được phát triển để giải các bài toán trong lý thuyết số và giải tích phiếm hàm thì nay đang được nghiên cứu cho các ứng dụng trong tối ưu hóa (tối ưu lồi) và khoa học máy tính (hình học tính toán). Trong hình học vi phân có các khái niệm bó sợi (fiber bundles) và vi tích phân trên các đa tạp, đặc biệt là vi tích phân vectơ và vi tích phân tensor. Hình học đại số thì mô tả các đối tượng hình học dưới dạng lời giải là những tập hợp phương trình đa thức, cùng với những khái niệm về lượng và không gian, cũng như nghiên cứu về các nhóm tô-pô kết hợp cấu trúc và không gian. Các nhóm Lie được dùng để nghiên cứu không gian, cấu trúc, và sự thay đổi. Tô pô trong tất cả những khía cạnh của nó có thể là một lĩnh vực phát triển vĩ đại nhất của toán học thế kỷ 20; nó bao gồm tô-pô tập hợp điểm (point-set topology), tô-pô lý thuyết tập hợp (set-theoretic topology), tô-pô đại số và tô-pô vi phân (differential topology). Trong đó, những chủ đề của tô-pô hiện đại là lý thuyết không gian mêtric hóa được (metrizability theory), lý thuyết tập hợp tiên đề (axiomatic set theory), lý thuyết đồng luân (homotopy theory), và lý thuyết Morse. Tô-pô cũng bao gồm giả thuyết Poincaré nay đã giải được, và giả thuyết Hodge vẫn chưa giải được. Những bài toán khác trong hình học và tô-pô, bao gồm định lý bốn màu và giả thiết Kepler, chỉ giải được với sự trợ giúp của máy tính.

📷📷📷📷📷📷Hình họcLượng giácHình học vi phânTô pôHình học fractalLý thuyết về độ đo

Sự thay đổi[sửa | sửa mã nguồn]

Hiểu và mô tả sự thay đổi là chủ đề thường gặp trong các ngành khoa học tự nhiên. Vi tích phân là một công cụ hiệu quả đã được phát triển để nghiên cứu sự thay đổi đó. Hàm sốtừ đây ra đời, như một khái niệm trung tâm mô tả một đại lượng đang thay đổi. Việc nghiên cứu chặt chẽ các số thực và hàm số của một biến thực được gọi là giải tích thực, với số phức thì có lĩnh vực tương tự gọi là giải tích phức. Giải tích phiếm hàm (functional analysis) tập trung chú ý vào những không gian thường là vô hạn chiều của hàm số. Một trong nhiều ứng dụng của giải tích phiếm hàm là trong cơ học lượng tử (ví dụ: lý thuyết phiếm hàm mật độ). Nhiều bài toán một cách tự nhiên dẫn đến những mối quan hệ giữa lượng và tốc độ thay đổi của nó, rồi được nghiên cứu dưới dạng các phương trình vi phân. Nhiều hiện tượng trong tự nhiên có thể được mô tả bằng những hệ thống động lực; lý thuyết hỗn độn nghiên cứu cách thức theo đó nhiều trong số những hệ thống động lực này thể hiện những hành vi không tiên đoán được nhưng vẫn có tính tất định.

📷📷📷📷📷📷Vi tích phânVi tích phân vec-tơPhương trình vi phânHệ thống động lựcLý thuyết hỗn độnGiải tích phức

Toán học ứng dụng[sửa | sửa mã nguồn]

Toán học ứng dụng quan tâm đến những phương pháp toán học thường được sử dụng trong khoa học, kỹ thuật, kinh doanh, và công nghiệp. Như vậy, "toán học ứng dụng" là một ngành khoa học toán học với kiến thức đặc thù. Thuật ngữ toán học ứng dụng cũng được dùng để chỉ lĩnh vực chuyên nghiệp, ở đó các nhà toán học giải quyết các bài toán thực tế. Với tư cách là một ngành nghề chú trọng vào các bài toán thực tế, toán học ứng dụng tập trung vào "việc thiết lập, nghiên cứu, và sử dụng những mô hình toán học" trong khoa học, kỹ thuật, và những lĩnh vực thực hành toán học khác. Trước đây, những ứng dụng thực tế đã thúc đẩy sự phát triển các lý thuyết toán học, để rồi sau đó trở thành chủ đề nghiên cứu trong toán học thuần túy, nơi toán học được phát triển chủ yếu cho chính nó. Như vậy, hoạt động của toán học ứng dụng nhất thiết có liên hệ đến nghiên cứu trong lĩnh vực toán học thuần túy.

Thống kê và những lĩnh vực liên quan[sửa | sửa mã nguồn]

Toán học ứng dụng có nhiều phần chung với thống kê, đặc biệt với lý thuyết xác suất. Các nhà thống kê, khi làm việc trong một công trình nghiên cứu, "tạo ra số liệu có ý nghĩa" sử dụng phương pháp tạo mẫu ngẫu nhiên (random sampling) và những thí nghiệm được ngẫu nhiên hóa (randomized experiments);[28] việc thiết kế thí nghiệm hay mẫu thống kê xác định phương pháp phân tích số liệu (trước khi số liệu được tạo ra). Khi xem xét lại số liệu từ các thí nghiệm và các mẫu hay khi phân tích số liệu từ những nghiên cứu bằng cách quan sát, các nhà thống kê "làm bật ra ý nghĩa của số liệu" sử dụng phương pháp mô phỏng và suy luận – qua việc chọn mẫu và qua ước tính; những mẫu ước tính và những tiên đoán có được từ đó cần được thử nghiệm với những số liệu mới.[29]

Lý thuyết thống kê nghiên cứu những bài toán liên quan đến việc quyết định, ví dụ giảm thiểu nguy cơ (sự tổn thất được mong đợi) của một hành động mang tính thống kê, chẳng hạn sử dụng phương pháp thống kê trong ước tính tham số, kiểm nghiệm giả thuyết, và chọn ra tham số cho kết quả tốt nhất. Trong những lĩnh vực truyền thống này của thống kê toán học, bài toán quyết định-thống kê được tạo ra bằng cách cực tiểu hóa một hàm mục tiêu (objective function), chẳng hạn giá thành hay sự mất mát được mong đợi, dưới những điều kiện nhất định.[30] Vì có sử dụng lý thuyết tối ưu hóa, lý thuyết toán học về thống kê có chung mối quan tâm với những ngành khoa học khác nghiên cứu việc quyết định, như vận trù học, lý thuyết điều khiển, và kinh tế học toán.[31]

Toán học tính toán[sửa | sửa mã nguồn]

Toán học tính toán đưa ra và nghiên cứu những phương pháp giải các bài toán toán học mà con người thường không có khả năng giải số được. Giải tích số nghiên cứu những phương pháp giải các bài toán trong giải tích sử dụng giải tích phiếm hàm và lý thuyết xấp xỉ; giải tích số bao gồm việc nghiên cứu xấp xỉ và rời rạc hóa theo nghĩa rộng, với sự quan tâm đặc biệt đến sai số làm tròn (rounding errors). Giải tích số và nói rộng hơn tính toán khoa học (scientific computing) cũng nghiên cứu những chủ đề phi giải tích như khoa học toán học, đặc biệt là ma trận thuật toán và lý thuyết đồ thị. Những lĩnh vực khác của toán học tính toán bao gồm đại số máy tính (computer algebra) và tính toán biểu tượng(symbolic computation).

📷📷📷📷📷📷📷Vật lý toán họcThủy động lực họcGiải tích sốTối ưu hóaLý thuyết xác suấtThống kêMật mã học📷📷📷📷📷 📷📷Tài chính toánLý thuyết trò chơiSinh học toánHóa học toánToán sinh họcKinh tế toánLý thuyết điều khiển

Giải thưởng toán học và những bài toán chưa giải được[sửa | sửa mã nguồn]

Có thể nói giải thưởng toán học danh giá nhất là Huy chương Fields,[32][33] thiết lập vào năm 1936 và nay được trao bốn năm một lần cho 2 đến 4 nhà toán học có độ tuổi dưới 40. Huy chương Fields thường được xem là tương đương với Giải Nobel trong những lĩnh vực khác. (Giải Nobel không xét trao thưởng trong lĩnh vực toán học) Một số giải thưởng quốc tế quan trọng khác gồm có: Giải Wolf về Toán học (thiết lập vào năm 1978) để ghi nhận thành tựu trọn đời; Giải Abel (thiết lập vào năm 2003) dành cho những nhà toán học xuất chúng; Huy chương Chern (thiết lập vào năm 2010) để ghi nhận thành tựu trọn đời.

Năm 1900, nhà toán học người Đức David Hilbert biên soạn một danh sách gồm 23 bài toán chưa có lời giải (còn được gọi là Các bài toán của Hilbert). Danh sách này rất nổi tiếng trong cộng đồng các nhà toán học, và ngày nay có ít nhất chín bài đã được giải. Một danh sách mới bao gồm bảy bài toán quan trọng, gọi là "Các bài toán của giải thiên niên kỷ" (Millennium Prize Problems), đã được công bố vào năm 2000, ai giải được một trong số các bài toán này sẽ được trao giải một triệu đô-la. Chỉ có một bài toán từ danh sách của Hilbert (cụ thể là giả thuyết Riemann) trong danh sách mới này. Tới nay, một trong số bảy bài toán đó (giả thuyết Poincaré) đã có lời giải.

Mối quan hệ giữa toán học và khoa học[sửa | sửa mã nguồn]

Carl Friedrich Gauss, người được xem là "hoàng tử của toán học."[34]

Gauss xem toán học là "nữ hoàng của các ngành khoa học".[35] Trong cụm từ La-tinh Regina Scientiarum và cụm từ tiếng Đức Königin der Wissenschaften (cả hai đều có nghĩa là "nữ hoàng của các ngành khoa học"), từ chỉ "khoa học" có nghĩa là "lĩnh vực tri thức," và đây cũng chính là nghĩa gốc của từ science (khoa học) trong tiếng Anh; như vậy toán học là một lĩnh vực tri thức. Sự chuyên biệt hóa giới hạn nghĩa của "khoa học" vào "khoa học tự nhiên" theo sau sự phát triển của phương pháp luận Bacon, từ đó đối lập "khoa học tự nhiên" với phương pháp kinh viện, phương pháp luận Aristotle nghiên cứu từ những nguyên lý cơ sở. So với các ngành khoa học tự nhiên như sinh học hay vật lý học thì thực nghiệm và quan sát thực tế có vai trò không đáng kể trong toán học. Albert Einstein nói rằng "khi các định luật toán học còn phù hợp với thực tại thì chúng không chắc chắn; và khi mà chúng chắc chắn thì chúng không còn phù hợp với thực tại."[36] Mới đây hơn, Marcus du Sautoy đã gọi toán học là "nữ hoàng của các ngành khoa học;... động lực thúc đẩy chính đằng sau những phát kiến khoa học."[37]

Nhiều triết gia tin rằng, trong toán học, tính có thể chứng minh được là sai (falsifiability) không thể thực hiện được bằng thực nghiệm, và do đó toán học không phải là một ngành khoa học theo như định nghĩa của Karl Popper.[38] Tuy nhiên, trong thập niên 1930, các định lý về tính không đầy đủ (incompleteness theorems) của Gödel đưa ra gợi ý rằng toán học không thể bị quy giảm về logic mà thôi, và Karl Popper kết luận rằng "hầu hết các lý thuyết toán học, giống như các lý thuyết vật lý và sinh học, mang tính giả định-suy diễn: toán học thuần túy do đó trở nên gần gũi hơn với các ngành khoa học tự nhiên nơi giả định mang tính chất suy đoán hơn hơn mức mà người ta nghĩ."[39]

Một quan điểm khác thì cho rằng một số lĩnh vực khoa học nhất định (như vật lý lý thuyết) là toán học với những tiên đề được tạo ra để kết nối với thực tại. Thực sự, nhà vật lý lý thuyết J. M. Ziman đã cho rằng khoa học là "tri thức chung" và như thế bao gồm cả toán học.[40] Dù sao đi nữa, toán học có nhiều điểm chung với nhiều lĩnh vực trong các ngành khoa học vật lý, đáng chú ý là việc khảo sát những hệ quả logic của các giả định. Trực giác và hoạt động thực nghiệm cũng đóng một vai trò trong việc xây dựng nên các giả thuyết trong toán học lẫn trong những ngành khoa học (khác). Toán học thực nghiệm ngày càng được chú ý trong bản thân ngành toán học, và việc tính toán và mô phỏng đang đóng vai trò ngày càng lớn trong cả khoa học lẫn toán học.

Ý kiến của các nhà toán học về vấn đề này không thống nhất. Một số cảm thấy việc gọi toán học là khoa học làm giảm tầm quan trọng của khía cạnh thẩm mỹ của nó, và lịch sử của nó trong bảy môn khai phóng truyền thống; một số người khác cảm thấy rằng bỏ qua mối quan hệ giữa toán học và các ngành khoa học là cố tình làm ngơ trước thực tế là sự tương tác giữa toán học và những ứng dụng của nó trong khoa học và kỹ thuật đã là động lực chính của những phát triển trong toán học. Sự khác biệt quan điểm này bộc lộ trong cuộc tranh luận triết học về chuyện toán học "được tạo ra" (như nghệ thuật) hay "được khám phá ra" (như khoa học). Các viện đại học thường có một trường hay phân khoa "khoa học và toán học".[41] Cách gọi tên này ngầm ý rằng khoa học và toán học gần gũi với nhau nhưng không phải là một.

0
Lý thuyết số là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà phát triển từ những nghiên cứu của nó.Lý thuyết số có thể chia thành một vài lĩnh vực dựa theo phương pháp giải và các dạng bài toán được xem xét. (Xem Danh sách các chủ đề của lý thuyết số).Cụm từ "số học" cũng được...
Đọc tiếp

Lý thuyết số là một ngành của toán học lý thuyết nghiên cứu về tính chất của số nói chung và số nguyên nói riêng, cũng như những lớp rộng hơn các bài toán mà phát triển từ những nghiên cứu của nó.

Lý thuyết số có thể chia thành một vài lĩnh vực dựa theo phương pháp giải và các dạng bài toán được xem xét. (Xem Danh sách các chủ đề của lý thuyết số).

Cụm từ "số học" cũng được sử dụng để nói đến lý thuyết số. Đây là cụm từ không còn được sử dụng rộng rãi nữa. Tuy nhiên, nó vẫn còn hiện diện trong tên của một số lĩnh vực toán học (hàm số học, số học đường cong elliptic, lý thuyết căn bản của số học). Việc sử dụng cụm từ số học ở đây không nên nhầm lẫn với số học sơ cấp.

Mục lục

1Các lĩnh vực

1.1Lý thuyết số sơ cấp

1.2Lý thuyết số giải tích

1.3Lý thuyết số đại số

1.4Lý thuyết số hình học

1.5Lý thuyết số tổ hợp

1.6Lý thuyết số máy tính

2Lịch sử

2.1Lý thuyết số thời kì Vedic

2.2Lý thuyết số của người Jaina

2.3Lý thuyết số Hellenistic

2.4Lý thuyết số Ấn Độ cổ điển

2.5Lý thuyết số của người Hồi giáo

2.6Lý thuyết số châu Âu ban đầu

2.7Mở đầu lý thuyết số hiện đại

2.8Lý thuyết số về số nguyên tố

2.9Các thành tựu trong thế kỉ 19

2.10Các thành tựu trong thế kỉ 20

3Danh ngôn

4Tham khảo

5Liên kết ngoài

Các lĩnh vực[sửa | sửa mã nguồn]

Lý thuyết số sơ cấp[sửa | sửa mã nguồn]

Trong lý thuyết số sơ cấp, các số nguyên được nghiên cứu mà không cần các kĩ thuật từ các lĩnh vực khác của toán học. Nó nghiên cứu các vấn đề về chia hết, cách sử dụng thuật toán Euclid để tìm ước chung lớn nhất, phân tích số nguyên thành thừa số nguyên tố, việc nghiên cứu các số hoàn thiện và đồng dư.

Rất nhiều vấn đề trong lý thuyết số có thể phát biểu dưới ngôn ngữ sơ cấp, nhưng chúng cần những nghiên cứu sâu sắc và những tiếp cận mới bên ngoài lĩnh vực lý thuyết số để giải quyết.

Một số ví dụ:

Giả thuyết Goldbach nói về việc biểu diễn các số chẵn thành tổng của hai số nguyên tố.

Giả thuyết Catalan (bây giờ là định lý Mihăilescu) nói về các lũy thừa nguyên liên tiếp.

Giả thuyết số nguyên tố sinh đôi nói rằng có vô hạn số nguyên tố sinh đôi

Giả thuyết Collazt nói về một dãy đệ quy đơn giản

Định lý lớn Fermat (nêu lên vào năm 1637, đến năm 1994 mới được chứng minh) nói rằng phương trình {\displaystyle x^{n}+y^{n}=z^{n}}📷 không có nghiệm nguyên khác không với n lớn hơn 2.

Lý thuyết về phương trình Diophantine thậm chí đã được chứng minh là không có phương pháp chung đề giải (Xem Bài toán thứ 10 của Hilbert)

Lý thuyết số giải tích[sửa | sửa mã nguồn]

Lý thuyết giải tích số sử dụng công cụ giải tích và giải tích phức để giải quyết các vần đề về số nguyên. Định lý số nguyên tố và giả thuyết Riemann là các ví dụ. Bài toán Waring(biểu diễn một số nguyên cho trước thành tổng các bình phương, lập phương, v.v...), giả thuyết số nguyên tố sinh đôi và giả thuyết Goldbach cũng đang bị tấn công bởi các phương pháp giải tích. Chứng minh về tính siêu việt của các hằng số toán học, như là π hay e, cũng được xếp vào lĩnh vực lý thuyết giải tích số. Trong khi những phát biểu về các số siêu việt dường như đã bị loại bỏ khỏi việc nghiên cứu về các số nguyên, chúng thực sự nghiên cứu giá trị của các đa thức với hệ số nguyên tại, ví dụ, e; chúng cũng liên quan mật thiết với lĩnh vực xấp xỉ Diophantine, lĩnh vực nghiên cứu một số thực cho trước có thể xấp xỉ bởi một số hữu tỉ tốt tới mức nào.

Lý thuyết số đại số[sửa | sửa mã nguồn]

Trong Lý thuyết số đại số, khái niệm của một số được mở rộng thành các số đại số, tức là các nghiệm của các đa thức với hệ số nguyên. Những thứ này bao gồm những thành phần tương tự với các số nguyên, còn gọi là số nguyên đại số. Với khái niệm này, những tính chất quen thuộc của số nguyên (như phân tích nguyên tố duy nhất) không còn đúng. Lợi thế của những công cụ lý thuyết - Lý thuyết Galois, group cohomology, class field theory, biểu diễn nhóm và hàm L - là nó cho phép lấy lại phần nào trật tự của lớp số mới.

Rất nhiều vấn đề lý thuyết số có thể được giải quyết một cách tốt nhất bởi nghiên cứu chúng theo modulo p với mọi số nguyên tố p (xem các trường hữu hạn). Đây được gọi là địa phương hóa và nó dẫn đến việc xây dựng các số p-adic; lĩnh vực nghiên cứu này được gọi là giải tích địa phương và nó bắt nguồn từ lý thuyết số đại sô.

Lý thuyết số hình học[sửa | sửa mã nguồn]

Lý thuyết số hình học (cách gọi truyền thống là (hình học của các số) kết hợp tất cả các dạng hình học. Nó bắt đầu với định lý Minkowski về các điểm nguyên trong các tập lồi và những nghiên cứu về sphere packing.

Lý thuyết số tổ hợp[sửa | sửa mã nguồn]

Lý thuyết số tổ hợp giải quyết các bài toán về lý thuyết số mà có tư tưởng tổ hợp trong công thức hoặc cách chứng minh của nó. Paul Erdős là người khởi xướng chính của ngành lý thuyết số này. Những chủ đề thông thường bao gồm hệ bao, bài toán tổng-zero, rất nhiều restricted sumset và cấp số cộng trong một tập số nguyên. Các phương pháp đại số hoặc giải tích rất mạnh trong những lĩnh vực này.

Lý thuyết số máy tính[sửa | sửa mã nguồn]

Lý thuyết số máy tính nghiên cứu các thuật toán liên quan đến lý thuyết số. Những thuật toán nhanh chóng để kiểm tra tính nguyên tố và phân tích thừa số nguyên tố có những ứng dụng quan trọng trong mã hóa.

Lịch sử[sửa | sửa mã nguồn]

Lý thuyết số thời kì Vedic[sửa | sửa mã nguồn]

Các nhà toán học Ấn Độ đã quan tâm đến việc tìm nghiệm nguyên của phương trình Diophantine từ thời kì Vedic. Những ứng dụng sớm nhất vào hình học của phương trình Diophantine có thể tìm thấy trong kinh Sulba, được viết vào khoảng giữa thế kỉ thứ 8 và thế kỉ thứ 6 trước Công nguyên. Baudhayana (năm 800 TCN) tìm thấy hai tập nghiệm nguyên dương của một hệ các phương trình Diophantine, và cũng sử dụng hệ phương trình Diophantine với tới bốn ẩn. Apastamba (năm 600) sử dụng hệ phương trình Diophantine với tới năm ẩn.

Lý thuyết số của người Jaina[sửa | sửa mã nguồn]

Ở Ấn Độ, các nhà toán học Jaina đã phát triển lý thuyết số có hệ thống đầu tiên từ thế kỉ thứ 4 trước Công Nguyên tới thế kỉ thứ 2. Văn tự Surya Prajinapti (năm 400 TCN) phân lớp tất cả các số thành ba tập: đếm được, không đếm được và vô hạn. Mỗi tập này lại được phân thành ba cấp:

Đếm được: thấp nhất, trung bình, và cao nhất.

Không đếm được: gần như không đếm được, thật sự không đếm được, và không đếm được một cách không đếm được.

Vô hạn: gần như vô hạn, thật sự vô hạn, vô hạn một cách vô hạn

Những người Jain là những người đầu tiên không chấp nhận ý tưởng các vô hạn đều như nhau. Họ nhận ra năm loại vô hạn khác nhau: vô hạn theo một hoặc hai hướng (một chiều), vô hạn theo diện tích (hai chiều), vô hạn mọi nơi (ba chiều), và vô hạn liên tục (vô số chiều).

Số đếm được cao nhất N của người Jain tương ứng với khái niệm hiện đại aleph-không {\displaystyle \aleph _{0}}📷 (cardinal number của tập vô hạn các số nguyên 1,2,...), the smallest cardinal transfinite number. Người Jain cũng định nghĩa toàn bộ hệ thống các cardinal number, trong đó {\displaystyle \aleph _{0}}📷 là nhỏ nhất.

Trong công trình của người Jain về lý thuyết tập hợp, họ phân biệt hai loại transfinite number cơ bản. Ở cả lĩnh vực vật lý và bản thể học (ontology), sự khác nhau được tạo ra giữa asmkhyata và ananata, giữa vô hạn bị chặn ngặt và vô hạn bị chặn lỏng.

Lý thuyết số Hellenistic[sửa | sửa mã nguồn]

Lý thuyết số là một đề tài ưa thích của các nhà toán học Hellenistic ở Alexandria, Ai Cập từ thế kỉ thứ 3 sau Công Nguyên. Họ đã nhận thức được khái niệm phương trình Diophantine trong rất nhiều trường hợp đặc biệt. Nhà toán học Hellenistic đầu tiên nghiên cứu những phương trình này là Diophantus.

Diophantus cũng đã tìm kiếm một phương pháp để tìm nghiệm nguyên của các phương trình vô định tuyến tính, những phương trình mà thiếu điều kiện đủ để có một tập duy nhất các nghiệm phân biệt. Phương trình {\displaystyle x+y=5}📷 là một phương trình như vậy. Diophantus đã khám phá ra nhiều phương trình vô định có thể biến đổi thành các dạng đã biết mặc dù thậm chí còn không biết được nghiệm cụ thể.

Lý thuyết số Ấn Độ cổ điển[sửa | sửa mã nguồn]

Phương trình Diophantine đã được nghiên cứu một cách sâu sắc bởi các nhà toán học Ân Độ trung cổ. Họ là những người đầu tiên nghiên cứu một cách có hệ thống các phương pháp tìm nghiệm nguyên của phương trình Diophantine. Aryabhata (499) là người đầu tiên tìm ra dạng nghiệm tổng quát của phương trình Diophantine tuyến tính {\displaystyle ay+bx=c}📷, được ghi trong cuốn Aryabhatiya của ông. Thuật toán kuttaka này được xem là một trong những cống hiến quan trọng nhất của Aryabhata trong toán học lý thuyết, đó là tìm nghiệm của phương trình Diophantine bằng liên phân số. Aryabhata đã dùng kĩ thuật này để tìm nghiệm nguyên của các hệ phương trình Diophantine, một bài toán có ứng dụng quan trọng trong thiên văn học. Ông cũng đã tìm ra nghiệm tổng quát đối với phương trình tuyến tính vô định bằng phương pháp này.

Brahmagupta vào năm 628 đã nắm được những phương trình Diophantine phức tạp hơn. Ông sử dụng phương pháp chakravala để giải phương trình Diophantine bậc hai, bao gồm cả các dạng của phương trình Pell, như là {\displaystyle 61x^{2}+1=y^{2}}📷. Cuốn Brahma Sphuta Siddhanta của ông đã được dịch sang tiếng Ả Rập vào năm 773 và sau đó được dịch sang tiếng Latin vào năm 1126. Phương trình {\displaystyle 61x^{2}+1=y^{2}}📷 sau đó đã được chuyển thành một bài toán vào năm 1657 bởi nhà toán học người Pháp Pierre de Fermat. Leonhard Euler hơn 70 năm sau đã tìm được nghiệm tổng quát đối với trường hợp riêng này của phương trình Pell, trong khi nghiệm tổng quát của phương trình Pell đã được tìm ra hơn 100 năm sau đó bởi Joseph Louis Lagrange vào 1767. Trong khi đó, nhiều thế kỉ trước, nghiệm tổng quát của phương trình Pell đã được ghi lại bởi Bhaskara II vào 1150, sử dụng một dạng khác của phương pháp chakravala. Ông cũng đã sử dụng nó để tìm ra nghiệm tổng quát đối với các phương trình vô định bậc hai và phương trình Diophantine bậc hai khác. Phương pháp chakravala của Bhaskara dùng để tìm nghiệm phương trình Pell đơn giản hơn nhiều so với phương pháp mà Lagrange sử dụng 600 năm sau đó. Bhaskara cũng đã tìm được nghiệm của các phương trình vô định bậc hai, bậc ba, bốn và cao hơn. Narayana Pandit đã cải tiến phương pháp chakravala và tìm thêm được các nghiệm tổng quát hơn đối với các phương trình vô định bậc hai và cao hơn khác.

Lý thuyết số của người Hồi giáo[sửa | sửa mã nguồn]

Từ thế kỉ 9, các nhà toán học Hồi giáo đã rất quan tâm đến lý thuyết số. Một trong những nhà toán học đầu tiên này là nhà toán học Ả Rập Thabit ibn Qurra, người đã khám phá ra một định lý cho phép tìm các cặp số bạn bè, tức là các số mà tổng các ước thực sự của số này bằng số kia. Vào thế kỉ 10, Al-Baghdadi đã nhìn vào một ít biến đổi trong định lý của Thabit ibn Qurra.

Vào thế kỉ 10, al-Haitham có thể là người đầu tiên phân loại các số hoàn hảo chẵn (là các số mà tổng các ước thực sự của nó bằng chính nó) thành các số có dạng {\displaystyle 2^{k-1}(2^{k}-1)}📷trong đó {\displaystyle 2^{k}-1}📷 là số nguyên tố. Al-Haytham cũng là người đầu tiên phát biểu định lý Wilson (nói rằng p là số nguyên tố thì {\displaystyle 1+(p-1)!}📷 chia hết cho p). Hiện không rõ ông ta có biết cách chứng minh nó không. Định lý có tên là định lý Wilson vì căn cứ theo một lời chú thích của Edward Waring vào năm 1770 rằng John Wilson là người đầu tiên chú ý đến kết quả này. Không có bằng chứng nào chứng tỏ John Wilson đã biết cách chứng minh và gần như hiển nhiên là Waring cũng không. Lagrange đã đưa ra chứng minh đầu tiên vào 1771.

Các số bạn bè đóng vai trò quan trọng trong toán học của người Hồi giáo. Vào thế kỉ 13, nhà toán học Ba Tư Al-Farisi đã đưa ra một chứng minh mới cho định lý của Thabit ibn Qurra, giới thiệu một ý tưởng mới rất quan trọng liên quan đến phương pháp phân tích thừa số và tổ hợp. Ông cũng đưa ra cặp số bạn bè 17296, 18416 mà người ta vẫn cho là của Euler, nhưng chúng tao biết rằng những số này còn được biết đến sớm hơn cả al-Farisi, có thể bởi chính Thabit ibn Qurra. Vào thế kỉ 17, Muhammad Baqir Yazdi đưa ra cặp số bạn bè 9.363.584 và 9.437.056 rất nhiều năm trước khi Euler đưa ra.

Lý thuyết số châu Âu ban đầu[sửa | sửa mã nguồn]

Lý thuyết số bắt đầu ở Châu Âu vào thế kỉ 16 và 17, với François Viète, Bachet de Meziriac, và đặc biệt là Fermat, mà phương pháp lùi vô hạn của ông là chứng minh tổng quát đầu tiên của phương trình Diophantine. Định lý lớn Fermat được nêu lên như là một bài toán vào năm 1637, và không có lời giải cho đến năm 1994. Fermat cũng nêu lên bài toán {\displaystyle 61x^{2}+1=y^{2}}📷 vào năm 1657.

Vào thế kỉ 18, Euler và Lagrange đã có những cống hiến quan trọng cho lý thuyết số. Euler đã làm một vài công trình về lý thuyết giải tích số, và tình được một nghiệm tổng quát của phương trình {\displaystyle 61x^{2}+1=y^{2}}📷, mà Fermat nêu thành bài toán. Lagrange đã tìm được một nghiệm của phương trình Pell tổng quát hơn. Euler và Lagrange đã giải những phương trình Pell này bằng phương pháp liên phân số, mặc dù nó còn khó hơn phương pháp chakravala của Ấn Độ.

Mở đầu lý thuyết số hiện đại[sửa | sửa mã nguồn]

Khoảng đầu thế kỉ 19 các cuốn sách của Legendre (1798), và Gauss kết hợp thành những lý thuyết có hệ thống đầu tiên ở châu Âu. Cuốn Disquisitiones Arithmeticae (1801) có thể nói là đã mở đầu lý thuyết số hiện đại.

Sự hình thành lý thuyết đồng dư bắt đầu với cuốn Disquisitiones của Gauss. Ông giới thiệu ký hiệu

{\displaystyle a\equiv b{\pmod {c}},}📷

và đã khám phá ra hầu hết trong lĩnh vực này. Chebyshev đã xuất bản vào năm 1847 một công trình bằng tiếng Nga về chủ đề này, và ở Pháp Serret đã phổ biến nó.

Bên cạnh những công trình tổng kết trước đó, Legendre đã phát biểu luật tương hỗ bậc hai. Định lý này, được khám phá ra bởi qui nạp và được diễn đạt bởi Euler, đã được chứng minh lần đầu tiên bởi Legendre trong cuốn Théorie des Nombres của ông (1798) trong những trường hợp đặc biệt. Độc lập với Euler và Legendre, Gauss đã khám phá ra định luật này vào khoảng năm 1795, và là người đầu tiên đưa ra chứng minh tổng quát. Những người cũng có cống hiến quan trọng: Cauchy; Dirichlet với cuốn Vorlesungen über Zahlentheorie kinh điển; Jacobi, người đã đưa ra ký hiệu Jacobi; Liouville, Zeller (?), Eisenstein, Kummer, và Kronecker. Lý thuyết này đã được mở rộng để bao gồm biquadratic reciprocity (Gauss, Jacobi những người đầu tiên chứng minh luật tương hỗ bậc ba, và Kummer).

Gauss cũng đã đưa ra biểu diễn các số thành các dạng bậc hai cơ số hai.

Lý thuyết số về số nguyên tố[sửa | sửa mã nguồn]

Một chủ đề lớn và lặp đi lặp lại trong lý thuyết số đó là nghiên cứu về sự phân bố số nguyên tố. Carl Fiedrich Gauss đã dự đoán kết quả của định lý số nguyên tố khi còn là học sinh trung học.

Chebyshev (1850) đưa ra các chặn cho số số nguyên tố giữa hai giới hạn cho trước. Riemann giới thiệu giải tích phức thành lý thuyết về hàm zeta Riemann. Điều này đã dẫn đến mối quan hệ giữa các số không của hàm zeta và sự phân bố số nguyên tố, thậm chí dẫn tới một chứng minh cho định lý số về số nguyên tố độc lập với Hadamard và de la Vallée Poussin vào năm 1896. Tuy nhiên, một chứng minh sơ cấp đã được đưa ra sau đó bởi Paul Erdős và Atle Selberg vào năm 1949. Ở đây sơ cấp nghĩa là không sử dụng kĩ thuật giải tích phức; tuy nhiên chứng minh vẫn rất đặc biệt và rất khó. Giả thuyết Riemann, đưa ra những thông tin chính xác hơn, vẫn còn là một câu hỏi mở.

Các thành tựu trong thế kỉ 19[sửa | sửa mã nguồn]

Cauchy, Pointsot (1845), Lebesgue (1859, 1868) và đặc biệt là Hermite đã có những cống hiến đối với lĩnh vực này. Trong lý thuyết về các ternary form Eisenstein đã trở thành người đi đầu, và với ông và H. J. S. Smith đó đúng là một bước tiến quan trọng trong lý thuyết về các dạng. Smith đã đưa ra một sự phân loại hoàn chỉnh về các ternary form bậc hai, và mở rộng những nghiên cứu của Gauss về các dạng bậc hai thực (real quadratic form) thành các dạng phức (complex form). Những nghiên cứu về biểu diễn các số thành tổng của 4, 5, 6, 6, 8 bình phương đã được phát triển bởi Eisenstein và lý thuyết này đã được hoàn chỉnh bởi Smith.

Dirichlet là người đầu tiên thuyết trình về lĩnh vực này ở một trường đại học ở Đức. Một trong những cống hiến của ông là sự mở rộng của Định lý lớn Fermat:

{\displaystyle x^{n}+y^{n}\neq z^{n},(x,y,z\neq 0,n>2)}📷

mà Euler và Legendre đã chứng minh cho n = 3, 4 (và từ đó suy ra cho các bội của 3 và 4). Dirichlet đã chỉ ra rằng:{\displaystyle x^{5}+y^{5}\neq az^{5}}📷. Một số nhà toán học Pháp là Borel, Poincaré, những hồi ký của họ rất lớn và có giá trị; Tannery và Stieltjes. Một số người có những cống hiến hàng đầu ở Đức là Kronecker, Kummer, Schering, Bachmann, và Dedekind. Ở Austria cuốn Vorlesungen über allgemeine Arithmetik của Stolz (1885-86) và ở Anh cuốn Lý thuyết số của Mathew (Phần I, 1892) là các công trình tổng quát rất có giá trị. Genocchi, Sylvester, và J. W. L. Glaisher cũng đã có những cống hiến cho lý thuyết này.

Các thành tựu trong thế kỉ 20[sửa | sửa mã nguồn]

Những nhà toán học lớn trong lý thuyết số thế kỉ 20 bao gồm Paul Erdős, Gerd Faltings, G. H. Hardy, Edmund Landau, John Edensor Littlewood, Srinivasa Ramanujan và André Weil.

Các cột mốc trong lý thuyết số thế kỉ 20 bao gồm việc chứng minh Định lý lớn Fermat bởi Andrew Wiles vào năm 1994 và chứng minh Giả thuyết Taniyama–Shimura vào năm 1999

Danh ngôn[sửa | sửa mã nguồn]

Toán học là nữ hoàng của các khoa học và lý thuyết số là nữ hoàng của toán học. — Gauss

Chúa sinh ra các số nguyên, và phần việc còn lại là của con người. — Kronecker

Tôi biết các con số rất đẹp đẽ. Nếu chúng không đẹp, thì chẳng có thứ gì đẹp.— Erdős

0
📷Một sơ đồ Venn mô phỏng phép giao của hai tập hợp.Lý thuyết tập hợp là ngành toán học nghiên cứu về tập hợp. Mặc dù bất kỳ đối tượng nào cũng có thể được đưa vào một tập hợp, song lý thuyết tập hợp được dùng nhiều cho các đối tượng phù hợp với toán học.Sự nghiên cứu lý thuyết tập hợp hiện đại do Cantor và Dedekind khởi xướng vào thập niên 1870. Sau khi khám phá ra...
Đọc tiếp

📷Một sơ đồ Venn mô phỏng phép giao của hai tập hợp.

Lý thuyết tập hợp là ngành toán học nghiên cứu về tập hợp. Mặc dù bất kỳ đối tượng nào cũng có thể được đưa vào một tập hợp, song lý thuyết tập hợp được dùng nhiều cho các đối tượng phù hợp với toán học.

Sự nghiên cứu lý thuyết tập hợp hiện đại do Cantor và Dedekind khởi xướng vào thập niên 1870. Sau khi khám phá ra các nghịch lý trong lý thuyết tập không hình thức, đã có nhiều hệ tiên đề được đề nghị vào đầu thế kỷ thứ 20, trong đó có các tiên đề Zermelo–Fraenkel, với tiên đề chọn là nổi tiếng nhất.

Ngôn ngữ của lý thuyết tập hợp được dùng trong định nghĩa của gần như tất cả các đối tượng toán học, như hàm số, và các khái niệm lý thuyết tập hợp được đưa nhiều chương trình giảng dạy toán học. Các sự kiện cơ bản về tập hợp và phần tử trong tập hợp có thể được mang ra giới thiệu ở cấp tiểu học, cùng với sơ đồ Venn, để học về tập hợp các đối tượng vật lý thường gặp. Các phép toán cơ bản như hội và giao có thể được học trong bối cảnh này. Các khái niệm cao hơn như bản số là phần tiêu chuẩn của chương trình toán học của sinh viên đại học.

Lý thuyết tập hợp, được hình thức hóa bằng lôgic bậc nhất (first-order logic), là phương pháp toán học nền tảng thường dùng nhất. Ngoài việc sử dụng nó như một hệ thống nền tảng, lý thuyết tập hợp bản thân nó cũng là một nhánh của toán học, với một cộng đồng nghiên cứu tích cực. Các nghiên cứu mới nhất về lý thuyết tập hợp bao gồm nhiều loại chủ đề khác nhau, từ cấu trúc của dòng số thực đến nghiên cứu tính nhất quán của bản số lớn.

Mục lục

1Lịch sử

1.1Thế kỷ 19

1.220. Jahrhundert

2Khái niệm và ký hiệu cơ bản

2.1Quan hệ giữa các tập hợp

2.1.1Quan hệ bao hàm

2.1.2Quan hệ bằng nhau

2.2Các phép toán trên các tập hợp

3Ghi chú

4Liên kết ngoài

5Đọc thêm

Lịch sử[sửa | sửa mã nguồn]

📷Georg Cantor

Các chủ đề về toán học thường xuất hiện và phát triển thông qua sự tương tác giữa các nhà nghiên cứu. Tuy nhiên, lý tuyết tập hợp được tìm thấy năm 1874 bởi Georg Cantor thông qua bài viết: "On a Characteristic Property of All Real Algebraic Numbers".[1][2]

Thế kỷ 19[sửa | sửa mã nguồn]

📷Tập hợp như là một thu góp trong tư tưởng các đối tượng có quan hệ nào đó với nhau.
Cái trống là phần tử của tập hợp
Cuốn sách không phải là phần tử của tập hợp.

Lý thuyết tập hợp được sáng lập bởi Georg Cantor trong những năm 1874 đến năm 1897. Thay cho thuật ngữ "tập hợp", ban đầu ông ta đã sử dụng những từ như "biểu hiện" (inbegriff) hoặc "sự đa dạng" (Mannigfaltigkeit); Về tập hợp và Lý thuyết tập hợp, ông chỉ nói sau đó. Năm 1895, ông đã diễn tả định nghĩa sau:

Qua một "tập hợp", chúng ta hiểu là bất kỳ một tổng hợp M của một số vật thể m khác nhau được xác định rõ ràng trong quan điểm hoặc suy nghĩ của chúng ta (được gọi là "các phần tử" của M) thành một tổng thể.

Cantor phân loại các tập hợp, đặc biệt là những tập hợp vô hạn, theo Lực lượng của chúng. Đối với tập hợp hữu hạn, đây là số lượng các phần tử của chúng. Ông gọi hai tập hợp " có lực lượng bằng nhau" khi chúng được ánh xạ song ánh với nhau, tức là khi có một mối quan hệ một-một giữa các phần tử của chúng. Cái được định nghĩa là sự đồng nhất lực lượng là một quan hệ tương đương, và một lực lượng hay số phần tử của một tập hợp M theo Cantor, là lớp tương đương của các tập hợp có lực lượng bằng M. Ông là người đầu tiên quan sát thấy rằng có những lực lựong vô hạn khác nhau. Tập hợp các số tự nhiên, và tất cả các tập hợp có lực lượng bằng nó, được Cantor gọi là 'Tập hợp đếm được, tất cả các tập hợp vô hạn khác được gọi là tập hợp không đếm được.

Các kết quả quan trọng từ Cantor

Tập hợp của số tự nhiên, số hữu tỉ (lập luận chéo đầu tiên của Cantor) và số đại số là đếm được và có lực lượng bằng nhau.

Tập hợp số thực có lực lượng lớn hơn so với các số tự nhiên, đó là không đếm được (luận chéo thứ hai củaCantor).

Tập hợp của tất cả các tập hợp con của một tập hợp M luôn luôn có lực lượng lớn hơn là M , mà còn được gọi là định lý Cantor.

Từ bất kỳ hai tập hợp có ít nhất một tập hợp cùng lực lượng với một tập hợp con của tập hợp kia.

Có rất nhiều lực lượng của tập hợp không đếm được.

Cantor gọi Giả thiết continuum là "có một lực lượng ở giữa tập hợp các số tự nhiên và tập hợp các số thực " Ông đã cố gắng để giải quyết, nhưng không thành công. Sau đó nó bật ra rằng vấn đề này trên nguyên tắc không quyết định được.

Ngoài Cantor, Richard Dedekind là một nhà tiên phong quan trọng của lý thuyết về lý thuyết tập hợp. Ông đã nói về các "hệ thống" thay vì tập hợp và phát triển một cấu trúc lý thuyết tập hợp của các con số thực vào năm 1872[4], một số lượng lý thuyết xây dựng số thực [2] và 1888 nói về tiên đề hóa lý thuyết tập hợp các con số tự nhiên.[5]Ông là người đầu tiên tạo ra công thức tiên đề Axiom of extensionality của lý thuyết tập hợp.

Ngay từ năm 1889, Giuseppe Peano, người đã miêu tả tập hợp là các tầng lớp, đã tạo ra cách tính toán bằng công thức logic các tầng lớp đầu tiên làm cơ sở cho số học của ông với các tiên đề Peano, mà ông đã mô tả lần đầu tiên trong một ngôn ngữ lý thuyết tập hợp chính xác. Do đó ông đã phát triển cơ sở cho ngông ngữ công thức ngày nay của lý thuyết tập hợp và giới thiệu nhiều biểu tượng được phổ biến ngày nay, đặc biệt là ký hiệu phần tử {\displaystyle \in }📷, được đọc là là "phần tử của"[6]. Trong khi đó {\displaystyle \in }📷 là chữ viết thường của ε (epsilon) của từ ἐστί (tiếng Hy Lạp: "là").[7]

Gottlob Frege đã cố gắng đưa ra một lý giải lý thuyết tập hợp khác của lý thuyết về số học vào năm 1893. Bertrand Russell đã phát hiện ra mâu thuẫn của nó vào năm 1902, được biết đến như là Nghịch lý Russell. Sự mâu thuẫn này và các mâu thuẫn khác nảy sinh do sự thiết lập tập hợp không hạn chế, đó là lý do tại sao dạng thức ban đầu của lý thuyết tập hợp sau này được gọi là lý thuyết tập hợp ngây thơ. Tuy nhiên, định nghĩa của Cantor không có ý muốn nói tới một lý thuyết tập hợp ngây thơ như vậy, như chứng minh của ông về loại tất cả là Nichtmenge cho thấy bởi nghịch lý Cantor thứ hai [6].[8]

Học thuyết của Cantor về lý thuyết tập hợp hầu như không được công nhận bởi những người đương thời về vai trò quan trọng của nó, và không được coi là bước tiến cách mạng, mà đã bị một số các nhà toán học như Leopold Kronecker không chấp nhận. Thậm chí nhiều hơn, nó còn bị mang tiếng khi các nghịch lý được biết tới, ví dụ như Henri Poincaré, chế diễu, "Logic không còn hoàn toàn, bây giờ nó tạo ra những mâu thuẫn."

20. Jahrhundert[sửa | sửa mã nguồn]

Trong thế kỷ XX, những ý tưởng của Cantor tiếp tục chiếm ưu thế; đồng thời, trong Logic toán, một lý thuyết Axiomatic Quantum đã được thiết lập, qua đó có thể vượt qua các mâu thuẫn hiện thời.

Năm 1903/1908 Bertrand Russell phát triển Type theory của mình, trong đó tập hợp luôn luôn có một kiểu cao hơn các phần tử của chúng, do đó sự hình thành các tập hợp có vấn đề sẽ không thể xảy ra. Ông chỉ ra cách đầu tiên ra khỏi những mâu thuẫn và cho thấy trong "Principia Mathematica" của 1910-1913 cũng là một phần hiệu quả của Type theory ứng dụng. Cuối cùng, tuy nhiên, nó chứng tỏ là không thích hợp với lý thuyết tập hợp của Cantor và cũng không thể vượt qua được sự phức tạp của nó.

Tiên đề lý thuyết tập hợp được phát triển bởi Ernst Zermelo vào năm 1907 ngược lại dễ sử dụng và thành công hơn, trong đó schema of replacement của ông là cần thiết để bổ sung vào. Zermelo thêm nó vào hệ thống Zermelo-Fraenkel năm 1930, mà ông gọi tắt là hệ thống-ZF. Ông đã thiết kế nó cho Urelement mà không phải là tập hợp, nhưng có thể là phần tử của tập hợp và được xem như cái Cantor gọi là "đối tượng của quan điểm của chúng tôi." Lý thuyết tập hợp Zermelo-Fraenkel, tuy nhiên, theo ý tưởng Fraenkel là lý thuyết tập hợp thuần túy mà đối tượng hoàn toàn là các tập hợp.

Tuy nhiên, nhiều nhà toán học thay vì theo một tiên đề hợp lý lại chọn một lý thuyết tập hợp thực dụng, tránh tập hợp có vấn đề, chẳng hạn như những áp dụng của Felix Hausdorff1914 hoặc Erich Kamke từ năm 1928. Dần dần các nhà toán học ý thức hơn rằng lý thuyết tập hợp là một cơ bản không thể thiếu cho cấu trúc toán học. Hệ thống ZF chứng minh được trong thực hành, vì vậy ngày nay nó được đa số các nhà toán học công nhận là cơ sở của toán học hiện đại; không còn có mâu thuẫn có thể bắt nguồn từ hệ thống ZF. Tuy nhiên, sự không mâu thuẫn chỉ có thể được chứng minh cho lý thuyết tập hợp với tập hợp hữu hạn, chứ không phải cho toàn bộ hệ thống ZF, mà chứa lý thuyết tập hợp của Cantor với tập hợp vô hạn. Theo Gödel's incompleteness theorems năm 1931 một chứng minh về tính nhất quán về nguyên tắc là không thể được. Những khám phá Gödel chỉ là chương trình của Hilbert để cung cấp toán học và lý thuyết tập hợp vào một cơ sở tiên đề không mâu thuẫn được chứng minh, một giới hạn, nhưng không cản trở sự thành công của lý thuyết trong bất kỳ cách nào, vì vậy mà một khủng hoảng nền tảng của toán học, mà những người ủng hộ của Intuitionismus, trong thực tế không được cảm thấy.

Tuy nhiên, sự công nhận cuối cùng của lý thuyết tập hợp ZF trong thực tế trì hoãn trong một thời gian dài. Nhóm toán học với bút danh Nicolas Bourbaki đã đóng góp đáng kể cho sự công nhận này; họ muốn mô tả mới toán học đồng nhất dựa trên lý thuyết tập hợp và biến đổi nó vào năm 1939 tại các lãnh vực toán học chính thành công. Trong những năm 1960, nó trở nên phổ biến rộng rãi rằng, lý thuyết tập hợp ZF thích hợp là cơ sở cho toán học. Đã có một khoảng thời gian tạm thời trong đó lý thuyết số lượng đã được dạy ở tiểu học.

Song song với câu chuyện thành công của thuyết tập hợp, tuy nhiên, việc thảo luận về các tiên đề tập hợp vẫn còn lưu hành trong thế giới chuyên nghiệp. Nó cũng hình thành những lý thuyết tập hợp tiên đề thay thế khoảng năm 1937 mà không hướng theo Cantor và Zermelo-Fraenkel, nhưng dựa trên Lý thuyết kiểu (Type Theory) của Willard Van Orman Quine từ New Foundations (NF) của ông ta, năm 1940 lý thuyết tập hợp Neumann-Bernays-Godel, mà khái quát hóa ZF về các lớp (Class (set theory)), hay năm 1955, lý thuyết tập hợp Ackermann, khai triển mới định nghĩa tập hợp của Cantor.

Khái niệm và ký hiệu cơ bản[sửa | sửa mã nguồn]

Lý thuyết tập hợp bắt đầu với một quan hệ nhị phân cơ bản giữa một phần tử o và một tập hợp A. Nếu o là một thành viên (hoặc phần tử) của A, ký hiệu o ∈ A được sử dụng. Khi đó ta cũng nói rằng phần tử a thuộc tập hợp A. Vì các tập cũng là các đối tượng, quan hệ phần tử cũng có thể liên quan đến các tập.

Quan hệ giữa các tập hợp[sửa | sửa mã nguồn]

Quan hệ bao hàm[sửa | sửa mã nguồn]

Nếu tất cả các thành viên của tập A cũng là thành viên của tập B , thì A là một Tập hợp con của B , được biểu thị {\displaystyle A\subseteq B}📷, và tập hợp B bao hàm tập hợp A. Ví dụ, {1, 2} là một tập hợp con của {1, 2, 3}, và {2} cũng vậy, nhưng { 1, 4} thì không.

Quan hệ bằng nhau[sửa | sửa mã nguồn]

Hai tập hợp A và B được gọi là bằng nhau nếu A là tập hợp con của B và B cũng là tập hợp con của A, ký hiệu A = B.

Theo định nghĩa, mọi tập hợp đều là tập con của chính nó; tập rỗng là tập con của mọi tập hợp. Mọi tập hợp A không rỗng có ít nhất hai tập con là rỗng và chính nó. Chúng được gọi là các tập con tầm thường của tập A. Nếu tập con B của A khác với chính A, nghĩa là có ít nhất một phần tử của A không thuộc B thì B được gọi là tập con thực sự hay tập con chân chính của tập A.

Chú ý rằng 1 và 2 và 3 là các thành viên của tập {1, 2, 3}, nhưng không phải là tập con, và các tập con, chẳng hạn như {1}, không phải là thành viên của tập {1, 2, 3}.

Các phép toán trên các tập hợp[sửa | sửa mã nguồn]

Hợp (Union): Hợp của A và B là tập hợp gồm tất cả các phần tử thuộc ít nhất một trong hai tập hợp A và B, ký hiệu A {\displaystyle \cup }📷 B

Ta có A {\displaystyle \cup }📷 B = {x: x {\displaystyle \in }📷 A hoặc x {\displaystyle \in }📷 B}, hợp của {1, 2, 3} và {2, 3, 4} là tập {1, 2, 3, 4}.

Giao (Intersection): Giao của hai tập hợp A và B là tập hợp tất cả các phần tử vừa thuộc A, vừa thuộc B, ký hiệu A {\displaystyle \cap }📷 B

Ta có A {\displaystyle \cap }📷 B = {x: x {\displaystyle \in }📷 A và x {\displaystyle \in }📷 B}, giao của {1, 2, 3} và {2, 3, 4} là tập { 2, 3}.

Hiệu (Difference): Hiệu của tập hợp A với tập hợp B là tập hợp tất cả các phần tử thuộc A nhưng không thuộc B, ký hiệu {\displaystyle A\setminus B}📷

Ta có: A \ B = {x: x {\displaystyle \in }📷 A và x {\displaystyle \notin }📷 B}Lưu ý, A \ B {\displaystyle \neq }📷 B \ A

Phần bù (Complement): là hiệu của tập hợp con. Nếu A{\displaystyle \subset }📷B thì B \ A được gọi là phần bù của A trong B, ký hiệu CAB (hay CB A)

1
Tô pô hay tô pô học có gốc từ trong tiếng Hy Lạp là topologia (tiếng Hy Lạp: τοπολογία) gồm topos (nghĩa là "nơi chốn") và logos (nghiên cứu), là một ngành toán học nghiên cứu các đặc tính còn được bảo toàn qua các sự biến dạng, sự xoắn, và sự kéo giãn nhưng ngoại trừ việc xé rách và việc dán dính. Do đó, tô pô còn được mệnh danh là "hình học của màng cao su". Các đặc tính đó...
Đọc tiếp

Tô pô hay tô pô học có gốc từ trong tiếng Hy Lạp là topologia (tiếng Hy Lạp: τοπολογία) gồm topos (nghĩa là "nơi chốn") và logos (nghiên cứu), là một ngành toán học nghiên cứu các đặc tính còn được bảo toàn qua các sự biến dạng, sự xoắn, và sự kéo giãn nhưng ngoại trừ việc xé rách và việc dán dính. Do đó, tô pô còn được mệnh danh là "hình học của màng cao su". Các đặc tính đó gọi là các bất biến tô pô. Khi ngành học này lần đầu tiên tìm ra trong những năm đầu của thế kỉ 20 thì nó vẫn được gọi bằng tiếng Latinh là geometria situs (hình học của nơi chốn) và analysis situs (giải tích nơi chốn). Từ khoảng 1925 đến 1975 nó đã trở thành lãnh vực lớn mạnh quan trọng bậc nhất của toán học.

Thuật ngữ tô pô cũng để chỉ một đối tượng toán học riêng biệt trong ngành. Với ý nghĩa này, một tô pô là một họ của các tập mở mà có chứa tập trống và toàn bộ không gian, và nó đóng dưới các phép hội bất kì và phép giao hữu hạn. Và đây là định nghĩa của một không gian tô pô.

Mục lục

1Giới thiệu

2Lịch sử

3Dẫn nhập sơ khởi

4Toán học tô pô

5Một số định lý tổng quát về tô pô

6Một số đề tài hữu ích về tô pô đại số

7Phác thảo lý thuyết đi sâu hơn

8Tổng quát hóa

9Xem thêm

10Tham khảo

11Liên kết ngoài

Giới thiệu[sửa | sửa mã nguồn]

📷Một tách cà phê trở thành vòng xuyến qua sự biến dạng hình học bảo toàn các bất biến tô pô. Cả tách cà phê và bánh vòng đều có những tính chất tô pô hoàn toàn giống nhau.

Người ta có phát biểu rằng một nhà tô pô học là người mà không thể phân biệt được sự khác nhau giữa một cái vòng xuyến và một ca đựng bia có quai. Vì cả hai đều là vật rắn và có đúng 1 lỗ hổng. Đôi khi tô pô còn được gọi là hình học về miếng cao suvì trong tô pô thì không có sự phân biệt giữa một đường hình vuông với một đường tròn. Đường hình tròn có thể được kéo co giãn để biến dạng thành hình vuông. Tuy nhiên, đường tròn thì hoàn toàn phân biệt với đường hình số 8, bởi vì không thể nào kéo giãn hình tròn để tạo thành hình số 8 mà không đục xé nó ra thêm một lỗ. Các không gian nghiên cứu trong tô pô gọi là các không gian tô pô. Chúng thay đổi từ dạng quen thuộc như không gian thực n chiều cho đến các cấu trúc vô cùng kì lạ.

Như vậy có thể nói một cách nôm na rằng tô pô là một ngành nghiên cứu về đặc tính của các cấu trúc đặc có tính siêu co giãn, siêu biến dạng nhưng lại không thể bị cắt rời thành nhiều mảnh, không thể bị đâm thủng hay bị dán dính vào nhau.

📷Mặt Mobius-một mặt có thể đi sang bên kia mà không phải vòng qua mép

.

Tô pô giới thiệu thêm một ngôn ngữ hình học mới - như là các phức đơn hình (simplicial complex), đồng luân (homotopy), đối đồng điều (cohomology), đối ngẫu Poincaré (Poincaré duality), phân thớ (fibration), không gian vec tơ tô pô (topological vector space), bó(sheaf), lớp đặc trưng (characteristic class), hàm Morse (Morse function), đại số đồng điều (homological algebra), dãy phổ (spectral sequence). Nó đã tạo ra một tác động chính đến các lĩnh vực rộng rãi của hình học vi phân (differential geometry), hình học đại số(algebraic geometry), hệ thống động lực học (dynamical system), phương trình đạo hàm riêng (partial differential equation) và hàm nhiều biến phức (several complex variables). "Hình học", theo cách diễn giải của Michael Atiyah và trường phái của ông ngày nay, bao gồm điều kể trên. Một cách nội hàm, bộ môn này có các lĩnh vực tô pô tập điểm (point-set topology) hay tô pô đại cương(general topology) nghiên cứu về các không gian tô pô mà không có thêm các điều kiện giới hạn; trong khi các lĩnh vực khác lại nghiên cứu các không gian tô pô giống như là các đa tạp (manifold). Những lĩnh vực đó bao gồm tô pô đại số (algebraic topology) - phát triển từ tô pô tổ hợp (combinatorial topology), tô pô hình học (geometric topology), tô pô ít chiều (low-dimensional topology) - chẳng hạn lo về lý thuyết nút (knot theory), và tô pô vi phân (differential topology).

Đây là bài viết tổng quan về tô pô. Để có các khái niệm chính xác toán học, xem thêm bài không gian tô pô hoặc các bài viết trong danh sách dưới đây. Bài thuật ngữ tô pô bao gồm các định nghĩa của các thuật ngữ dùng trong tô pô học.

Lịch sử[sửa | sửa mã nguồn]

Nguồn gốc của tô pô đã được người ta biết đến từ môn hình học trong các nền văn hóa cổ đại. Gottfried Leibniz là người đầu tiên khai thác thật ngữ analysus situs, sau đó các nghiên cứu trong thế kỉ 19 đã dùng như ngày nay là tô pô. Trong tiểu luận của Leonhard Euler về Bảy cầu Königsberg đã viết về các thành quả tô pô.

Từ topology được nhà toán học người Đức Johann Benedict Listing đưa ra sử dụng lần đầu tiên năm 1847 trong Vorstudien zur Topologie, mặc dù ông đã dùng nó từ mười năm trước

Georg Cantor, cha đẻ của lý thuyết tập hợp, đã khởi sự nghiên cứu lý thuyết tập điểm trong các không gian Euclide vào nửa cuối thế kỉ 19 như là một phần của khảo cứu về chuỗi Fourier.

Năm 1895, Henri Poincaré xuất bản tác phẩm Analyis Situs, đã giới thiệu các khái niệm về đồng luân và đồng điều.

Maurice Fréchet, thống nhất các nghiên cứu về không gian hàm của các nhà toán học Cantor, Volterra, Arzelà, Hadamard, Ascoli và những người khác. Ông đã dẫn nhập khái niệm về không gian metric trong năm 1906.

Năm 1914, Felix Hausdorff, tổng quát hóa đặc tính của không gian metric và đặt ra khái niệm "không gian tô pô" đồng thời cung cấp một định nghĩa mà ngày nay gọi là không gian Hausdorff.

Cuối cùng, vào năm 1922 Kazimierz Kuratowski đã tổng quát hóa thêm một bước nhỏ để đạt tới khái niệm không gian tô pô như hiện nay.

Thuật ngữ topologie được giới thiệu lần đầu ở Đức vào năm 1847 bởi Johann Benedict Listing trong cuốn Vorstudien zur Topologie (Những nghiên cứu trước tác về tô pô), Vandenhoeck và Ruprecht, Göttingen, pp. 67, 1948. Mặc dù vậy, Listing đã dùng chữ này từ mười năm trước. Topology, dạng Anh ngữ, đã được giới thiệu trong bản in của Solomon Lefschetz năm 1930 để thay cho tên trước đó là analysis situs. Riêng thuật ngữ topologist (nhà tô pô học), một chuyên gia trong ngành tô pô, có lẽ đã ra đời khoảng 1920.

📷Danh sách một số nhà nghiên cứu Tô pô ít chiều (low-dimensional topology) gần đây

Dẫn nhập sơ khởi[sửa | sửa mã nguồn]

Các không gian tô pô được tìm thấy sẵn có trong giải tích toán học, đại số trừu tượng và hình học. Điều này đã làm cho ngành nghiên cứu này trở thành đối tượng quan trọng trong việc thống nhất toán học. Tô pô đại cương, hay tô pô tập điểm, xác định và nghiên cứu những đặc tính hữu dụng của các không gian và các ánh xạ như là tính liên thông, tính compact và tính liên tục. Tô pô đại số là công cụ rất mạnh để nghiên cứu các không gian tô pô và các ánh xạ giữa chúng. Nó liên kết "rời rạc" và có nhiều bất biến khả đoán với các ánh xạ và các không gian thường là trong một cách thức có tính hàm tử. Các luận giải từ môn tô pô đại số ảnh hưởng lớn đến đại số trừu tượng và hình học đại số.

📷Bảy cây cầu Königsberg, một bài toán tô pô nổi tiếng

Động cơ rõ ràng phía sau của tô pô là việc một số vấn đề hình học không phụ thuộc vào hình dạng chính xác của đối tượng tham gia mà phụ thuộc vào "cách thức chúng nối kết nhau". Một trong những bài viết đầu tiên về tô pô được Leonhard Euler mô tả rằng không thể tìm ra một cách đi xuyên qua các thị tứ của Königsberg mà chỉ băng qua mỗi cầu nối giữa chúng đúng một lần. Kết quả này không phụ thuộc vào độ dài của các cây cầu, hay ngay cả khoảng cách giữa chúng mà chỉ phụ thuộc vào các đặc tính liên thông: Các cây cầu được nối như thế nào giữa các cù lao và các bờ sông. Bài toán này, được gọi là Bảy cầu ở Königsberg, đã trở thành bài toán dẫn nhập nổi tiếng trong toán, và đưa tới một phân nhánh là lý thuyết đồ thị.

Tương tự, định lý mặt cầu tóc của tô pô đại số bảo rằng "người ta không thể chải xuôi tóc trên một mặt cầu trơn". Ý nghĩa thực của nó là không tồn tại một mặt cầu tóc nào mà không có "xoáy" ngoại trừ tất cả tóc đều dựng đứng. Định lý này lập tức thuyết phục được hầu hết mọi người (do tính thực tế kiểm nghiệm được trên bản thân). Mặc dù rằng những người biết tới định lý này có thể không nhận biết mệnh đề phát biểu chính thức của định lý. Đó là Trên một mặt cầu, không tồn tại trường vectơ tiếp tuyến liên tục không triệt tiêu nào, cũng giống Bài toán Bảy cây cầu, kết quả trên không phụ thuộc vào dạng cầu mà nó còn đúng cho mọi bề mặt "blob" (là các đối tượng thỏa mãn tính trơn của bề mặt), miễn là chúng không có lỗ hổng (thí dụ hình vòng xuyến, hình vòng số 8 sẽ vi phạm điều kiện của định lý mặt cầu tóc - nhưng hình quả trám, hình trái bóng nhựa bị bóp xẹp lại thỏa mãn đòi hỏi của định lý).

Để có thể nghiên cứu các vấn đề mà chúng không hoàn toàn phụ thuộc vào hình dạng của đối tượng, người ta phải tách bạch rõ ra các tính chất nào sẽ phụ thuộc vào hình dạng. Và từ yêu cầu này phát sinh khái niệm về "tương đương tô pô". Trong các thí dụ trên, việc "không thể băng qua mỗi cây cầu chỉ một lần" có thể được áp dụng cho mọi cách xếp đặt của các cây cầu mà vẫn tương đương tô pô với các cây cầu nguyên thủy ở Königsberg; cũng như vậy, định lý mặt cầu tóc đúng cho mọi không gian tô pô tương đương với một hình cầu (như là hình quả trám chẳng hạn).

Nói cách khác, hai không gian là tương đương tô pô nếu tồn tại một phép đồng phôi giữa chúng. Trong trường hợp này, các không gian đó được gọi là đồng phôi và chúng được xét một cách chủ yếu như là có cùng các mục đích (nghiên cứu) của tô pô.

Một cách chính thức, một phép đồng phôi là một song ánh liên tục với hàm ngược cũng liên tục.

Một cách nôm na có thể cho thấy một ý nghĩa rõ hơn: Hai không gian là tương đương tô pô nếu người ta có thể biến dạng một không gian thành cái còn lại mà không phải cắt bỏ hay đục thủng các chi tiết ra và không phải dán các chi tiết lại với nhau. Dĩ nhiên, ở đây ta giả thiết "vật" (không gian) bị biến dạng có khả năng "siêu dẻo". Do vậy, việc nói đùa rằng nhà tô pô học không thể phân biệt được một vòng xuyến và cái ly có quai là vì cái ly có thể bị nặn bóp để trở thành hình vòng xuyến.

Một bài tập đơn giản về tương đương tô pô chia 10 chữ số Ả Rập, 0,1,2,3,4,5,6,7,8,9, thành các lớp có hình dạng tương đương nhau về mặt tô pô. Lớp thứ nhất bao gồm {1,2,3,5,7}; hình dạng các chữ số này không có lỗ hổng. Lớp thứ hai là {0,4,9,6}; hình dạng các chữ số này có đúng 1 lỗ hổng. Và lớp thứ 3 chỉ có một phần tử duy nhất {8} có tới hai lỗ hổng.

Toán học tô pô[sửa | sửa mã nguồn]

Để hiểu được tô pô theo góc độ toán học, có thể phải dùng đến hai khái niệm tập hợp và ánh xạ.

Cho một tập hợp X ≠ {\displaystyle \emptyset }📷 và họ t các tập hợp con của X. Họ t được gọi là tô pô trên X nếu:

{\displaystyle \emptyset }📷 {\displaystyle \in }📷 t, X {\displaystyle \in }📷 t: họ t bao gồm cả X và cả tập hợp rỗng.

Hợp một họ bất kỳ các phần tử của t là một phần tử của t.

Giao của một họ hữu hạn các phần tử của t là một phần tử của t.

Cặp (X,t) khi ấy được gọi là một không gian tô pô, ta có thể ghi tắt X mà không cần ghi đầy đủ là (X,t). Tập {\displaystyle \emptyset }📷 không phải là không gian tôpô.

Một số định lý tổng quát về tô pô[sửa | sửa mã nguồn]

Mọi khoảng đóng trong R có chiều dài hữu hạn là compact. Rộng hơn: Một tập hợp trong R n là compact nếu và chỉ nếu nó đóng và bị chặn. (Xem thêm Định lý Heine-Borel)

Ảnh liên tục của một không gian compact là compact.

Định lý Tychonoff: Tích của các không gian compact là compact.

Mọi dãy điểm trong một không gian mêtric compact có dãy con hội tụ.

Mọi khoảng trong R là liên thông.

Ảnh liên tục của một không gian liên thông (connected space) là liên thông.

Mọi không gian mêtric là không gian Hausdorff, thì cũng là không gian chuẩn tắc và parcompact.

Định lý mêtric hoá cung cấp điều kiện cần và đủ cho một tô pô để trở thành một không gian mêtric.

Định lý mở rộng Tietze: Trong một không gian chuẩn tắc, mọi hàm có giá trị thực liên tục xác định trên một không gian con đóng đều có thể mở rộng thành một hàm liên tục xác định trên toàn bộ không gian đó.

Định lý phạm trù Baire: Nếu X là một không gian metric đủ hay là một không gian Hausdorff compact địa phương, thì hội đếm được của các tập không đâu trù mật có phần trong là tập trống.

Mọi không gian đường liên thông, đường liên thông địa phương, và đơn liên bán địa phương đều có một phủ phổ dụng.

0
Dải ngân hà lớn như thế nào? Khi thoát ra khỏi ánh đèn thành phố và nhìn lên bầu trời vào ban đêm bạn sẽ thấy những dải sao dáng lấp lánh tạo nên dải ngân hà tuyệt đẹp. Chính bởi dải ngân hà quá rộng lớn nên vẫn còn nhiều điều bí ẩn mà khoa học chưa thể khám phá hết.Từ trước tới nay, đã không ít những nghiên cứu về dải ngân hà của các nhà khoa học tuy nhiên cho tới thời...
Đọc tiếp

Dải ngân hà lớn như thế nào?

Khi thoát ra khỏi ánh đèn thành phố và nhìn lên bầu trời vào ban đêm bạn sẽ thấy những dải sao dáng lấp lánh tạo nên dải ngân hà tuyệt đẹp. Chính bởi dải ngân hà quá rộng lớn nên vẫn còn nhiều điều bí ẩn mà khoa học chưa thể khám phá hết.

Từ trước tới nay, đã không ít những nghiên cứu về dải ngân hà của các nhà khoa học tuy nhiên cho tới thời điểm hiện tại vẫn chưa thể khẳng định được dải ngân hà nặng bao nhiêu. Theo tính toán ước lượng, các nhà khoa học cho rằng dải ngân hà có khối lượng khoảng từ 700 tỷ đến 2 nghìn tỷ lần so với Mặt trời.

Nhà thiên văn học Ekta Patel thuộc Đại học Arizona ở Tucson nói với Live Science, thực tế để đo được dải ngân hà nặng bao nhiêu không phải là chuyện dễ dàng. Nó giống như việc điều tra dân số ở Hoa Kỳ nhưng bạn lại không được sử dụng mạng internet hay không thể rời khỏi thành phố bạn sống.

Cũng theo Ekta Patel, lý do không thể đo được chính xác dải ngân hà chính là bởi phần lớn khối lượng của thiên hà là vô hình. Vật chất tối, một chất bí ẩn không phát ra bất kỳ loại ánh sáng nào, chiếm khoảng 85% dải ngân hà. Vì vậy, chỉ dựa vào số lượng các ngôi sao không thì cũng không thể giúp con người có câu trả lời chính xác và tiến xa hơn.

Do đó, Patel nói, các nhà nghiên cứu thường nhìn vào quỹ đạo của một số thiên thể. Phương pháp này dựa trên các phương trình trọng lực của Isaac Newton hơn 300 năm trước đã cho chúng ta biết rằng, tốc độ và khoảng cách mà một vật thể nhỏ hơn xoay quanh một vật lớn hơn có liên quan đến khối lượng của vật thể lớn hơn.

Trong một nghiên cứu năm 2017 được công bố trên Tạp chí Vật lý thiên văn, các nhà nghiên cứu đã sử dụng một phương pháp đó là nhìn vào các thiên hà vệ tinh nhỏ cách xa hàng trăm ngàn năm ánh sáng đi xung quanh dải ngân hà giống như các hành tinh quay quanh một ngôi sao.

Nhưng có một vấn đề với các thiên hà vệ tinh này chính là quỹ đạo của chúng dài hàng tỷ năm. Có nghĩa là sau một vài năm thì những hành tinh này hầu như không di chuyển khiến cho các nhà nghiên cứu khó có thể xác định được tốc độ quỹ đạo của chúng.

Tiếp theo, trong một nghiên cứu vào tháng 6/2018 được công bố trên Tạp chí Vật lý thiên văn, Patel và các đồng nghiệp đã thử một phương pháp mới để cân thiên hà. Họ đã nghiên cứu rất kỹ các mô phỏng thông qua máy tính về vũ trụ ảo để có thể tính toán về tốc độ quay của các thiên hà nhỏ xung quanh thiên hà lớn hơn.

Theo đó đã có khoảng 90.000 thiên hà vệ tinh được các nhà nghiên cứu mô phỏng sau đó được so sánh với các dữ liệu về 9 thiên hà thực sự quay quanh dải ngân hà.

Để nghiên cứu được rõ ràng hơn các nhà nghiên cứu đã lựa chọn ra các thiên thể có đặc tính quỹ đạo phù hợp nhất với các thiên hà vệ tinh để xem xét khối lượng của các thiên hà được mô phỏng mà chúng quay xung quanh.

Nghiên cứu đã cho các nhà khoa học có thể ước tính được khối lượng thực sự của dải ngân hà của chúng ta là bao nhiêu. Theo đó, dải ngân hà gấp 960 tỷ lần khối lượng Mặt trời.

Nhà nghiên cứu Patel cho biết, kết quả này khá khả quan mặc dù vẫn chưa thể cho con số chính xác hơn. Để có câu trả lời tốt hơn, có thể sẽ sử dụng vệ tinh Gaia của Cơ quan Vũ trụ châu Âu. Đây là một vệ tinh đưa ra các phép đo cực kỳ chính xác của 30 thiên hà lùn mờ quay quanh dải ngân hà.

Patel nói thêm, cô sẽ sử dụng dữ liệu này kết hợp với các mô phỏng vũ trụ để cân đối các phép đo trọng lượng chính là nhiệm vụ trong tương lai của cô.

Gần đây, Kính viễn vọng Không gian Hubble của NASA và vệ tinh Gaia của Cơ quan Vũ trụ Châu Âu đã kết hợp với nhau để quan sát các cụm sao hình cầu quay quanh thiên hà và đã phát hiện ra rằng, dải ngân hà nặng khoảng 1,5 nghìn tỷ khối lượng Mặt trời. Đây là con số chính xác hơn hẳn các nghiên cứu trước đó sẽ được công bố sớm trên Tạp chí Vật lý thiên văn.

Patel nói, khi biết khối lượng của thiên hà sẽ giúp các nhà thiên văn học phát hiện ra nhiều điều bí ẩn khác. Cho tới nay, nhờ vào kính thiên văn các nhà khoa học đã phát hiện ra khoảng 50 thiên hà đi quanh dải ngân hà. Dù vậy, các nhà khoa học vẫn chưa có câu trả lời chính xác tuyệt đối về dài ngân hà nặng bao nhiêu, có khoảng bao nhiêu thiên hà vệ tinh sẽ được tìm thấy?

Patel hy vọng rằng, các nghiên cứu trong tương lai và những con số đã được các nhà khoa học ước lượng được sẽ là dữ liệu để xác định khối lượng của dải ngân hà thực sự nặng bao nhiêu. Có thể trong khoảng 10 năm hoặc 20 năm nữa chúng ta sẽ có câu trả lời tốt hơn.

Theo khoahoc.tv

1
24 tháng 4 2019

rảnh

Câu 1: Trong số các câu sau, câu nào đúng nhất khi nói về khoa học hoá học?A. Hóa học là khoa học nghiên cứu tính chất vật lí của chất.B. Hóa học là khoa học nghiên cứu tính chất hoá học của chất.C. Hóa học là khoa học nghiên cứu các chất, sự biến đổi và ứng dụng của chúng.D. Hóa học là khoa học nghiên cứu tính chất và ứng dụng của chấtCâu 2: Vật thể nào sau đây là vật thể nhân tạo?A. Hoa đào. B. Cây cỏ....
Đọc tiếp

Câu 1: Trong số các câu sau, câu nào đúng nhất khi nói về khoa học hoá học?

A. Hóa học là khoa học nghiên cứu tính chất vật lí của chất.

B. Hóa học là khoa học nghiên cứu tính chất hoá học của chất.

C. Hóa học là khoa học nghiên cứu các chất, sự biến đổi và ứng dụng của chúng.

D. Hóa học là khoa học nghiên cứu tính chất và ứng dụng của chất

Câu 2: Vật thể nào sau đây là vật thể nhân tạo?

A. Hoa đào. B. Cây cỏ. C. Quần áo. D. Núi đá vôi.

Câu 3: Vật thể nào dưới đây là vật thể tự nhiên?

A. Cái bàn. B. Cái nhà. C. Quả chanh. D. Quả bóng.

Câu 4: Chất nào sau đây được coi là tinh khiết?

A. Nước cất.    B. Nước mưa.  C. Nước lọc.  D. Đồ uống có gas.

Câu 5: Trạng thái hay thể (rắn, lỏng hay khí), màu, mùi, vị, tính tan hay không tan trong nước (hay trong một chất lỏng khác), nhiệt độ sôi, nhiệt độ nóng chảy, khối lượng riêng, tính dẫn nhiệt, dẫn điện,... là

A.  tính chất tự nhiên. B.  tính chất vật lý.

C.  tính chất hóa học. D.  tính chất khác.

Câu 6: Khả năng biến đổi thành chất khác, ví dụ như khả năng bị phân hủy, bị đốt cháy,... là

A.  tính chất tự nhiên. B.  tính chất vật lý.

C.  tính chất hóa học. D.  tính chất khác.

Câu 7: Tính chất nào của chất trong số các chất sau đây có thể biết được bằng cách quan sát trực tiếp mà không phải dùng dụng cụ đo hay làm thí nghiệm?

A. Màu sắc. B. Tính tan trong nước.

C. Khối lượng riêng. D. Nhiệt độ nóng chảy.

Câu 8: Trong nguyên tử các hạt mang điện là:

A. Nơtron, electron. B. Proton, electron.

C. Proton, nơtron, electron. D. Proton, nơtron.

Câu 9: Vỏ nguyên tử được tạo nên từ loại hạt nào sau đây?

A. Electron. B. Proton.

C. Proton, nơtron, electron. D. Proton, nơtron.

Câu 10: Hạt nhân nguyên tử cấu tạo bởi hạt

A. proton và electron. B. nơtron và  electron.

C. proton và nơtron. D. proton, nơtron và electron.

Câu 11: Nguyên tố hóa học là tập hợp nguyên tử cùng loại có cùng
A. số nơtron trong hạt nhân.
B. số proton trong hạt nhân.
C. số electron trong hạt nhân.
D. số proton và số nơtron trong hạt nhân.

Câu 12: Cho C2H5OH. Số nguyên tử H có trong hợp chất

A. 1. B. 5. C. 3. D. 6.

Câu 13: Hợp chất natri cacbonat có công thức hóa học là Na2CO3 thì tỉ lệ các nguyên tố theo thứ tự Na : C : O là

A. 2 : 0 : 3.      B.  1 : 2 : 3.

C.  2 : 1 : 3.     D.  3 : 2 : 1.

Câu 14: Ba nguyên tử hiđro được biểu diễn là

A. 3H. B. 3H2. C. 2H3. D. H3.

Câu 15: Cách viết 2C có ý nghĩa:

A. 2 nguyên tố cacbon. B. 2 nguyên tử cacbon.

C. 2 đơn vị cacbon. D. 2 khối lượng cacbon.

Câu 16: Kí hiệu  biểu diễn hai nguyên tử oxi là

A. 2O.        B. O2.           C. O2. D. 2O2

Câu 17: Cách biểu diễn 4H2 có nghĩa là

A. 4 nguyên tử hiđro. B. 8 nguyên tử hiđro.

C. 4 phân tử hiđro.             D. 8 phân tử hiđro.

Câu 18: Công thức hóa học nào sau đây là công thức của hợp chất?

A. Fe. B. NO2. C. Ca. D. N2.

Câu 19: Chất thuộc đơn chất có công thức hóa học là

A.  KClO3. B.  H2O. C.  H2SO4. D.  O3.

Câu 20: Muối ăn (NaCl) là

A. hợp chất. B. đơn chất. C. nguyên tử. D. hỗn hợp.

Câu 21: Dãy chất chỉ gồm các đơn chất?

A. H2, O2, Na. B. CaO, CO2, ZnO.

C. HNO3, H2CO3, H2SO4. D. Na2SO4, K2SO4, CaCO3.

Câu 22: Dãy chất sau đây đều là hợp chất?

A. Cl2, KOH,  H2SO4, AlCl3. B. CuO, KOH, H2SO4.

C. CuO, KOH, Fe, H2SO4. D. Cl2, Cu, Fe, Al.

Câu 26: Sắt có hóa trị III trong công thức nào?

A. Fe2O3. B. Fe2O. C. FeO. D. Fe3O2.

Câu 27: Nguyên tử P có hoá trị V trong hợp chất nào?

A. P2O3. B. P2O5. C. P4O4. D. P4O10.

Câu 28: Nguyên tử N có hoá trị III trong phân tử chất nào?

A. N2O5. B. NO2. C. NO. D. N2O3.

mình cần gấp nha xin các bạn giúp mình:((

2
25 tháng 11 2021

Câu 1: C

Câu 2: C. Quần áo

Câu 3: A. Qủa chanh

Câu 4: A.Nước cất

Câu  5: B.Tính chất vật lí

Câu 6:C.Tính chất hóa học

Câu 7: A.Màu sắc

Câu 8: B. Proton, Electron

Câu 9: A. Electron

Câu 10:C. Proton, Nơtron

Câu 11: B. Có cùng số proton trong hạt nhân

Câu 12: A.1

Câu 13: C. 2:1:3

Câu 14: A.3H

Câu 15: B. Hai nguyên tử carbon

Câu 16: 2O

Câu 17: 4 phân tử hiđro

Câu 18: B.NO2

Câu 19: D.O3

Câu 20: A.hợp chất

Câu 21: dãy A 

Câu 22: Dãy B

Câu 26: Sắt có hóa trị III trong công thức A

Câu 27: Nguyên tử P có hóa trị V trong hợp chất B

Câu 28: Nguyên tử N có hóa trị III trong phân tử D

 

25 tháng 11 2021

1.C 2.C 3.C 4.A 5.B 6.C 7.A 8.C 9.A 10.C

 

CHƯƠNG 1 : CHẤT – NGUYÊN TỬ – PHÂN TỬCâu 1: Trong số các câu sau, câu nào đúng nhất khi nói về khoa học hoá học?A. Hóa học là khoa học nghiên cứu tính chất vật lí của chấtB. Hóa học là khoa học nghiên cứu tính chất hoá học của chấtC. Hóa học là khoa học nghiên cứu các chất, sự biến đổi và ứng dụng của chúngD. Hóa học là khoa học nghiên cứu tính chất và ứng dụng của chấtCâu 2 : Nguyên tử khối là khối...
Đọc tiếp

CHƯƠNG 1 : CHẤT – NGUYÊN TỬ – PHÂN TỬ

Câu 1: Trong số các câu sau, câu nào đúng nhất khi nói về khoa học hoá học?

A. Hóa học là khoa học nghiên cứu tính chất vật lí của chất

B. Hóa học là khoa học nghiên cứu tính chất hoá học của chất

C. Hóa học là khoa học nghiên cứu các chất, sự biến đổi và ứng dụng của chúng

D. Hóa học là khoa học nghiên cứu tính chất và ứng dụng của chất

Câu 2 : Nguyên tử khối là khối lượng của một nguyên tử tính bằng đơn vị nào?

A. Gam B. Kilôgam

C. Đơn vị cacbon (đvC) D. Cả 3 đơn vị trên

Câu 3: Thành phần cấu tạo của hầu hết của các loại nguyên tử gồm:

A. Prôton và electron B. Nơtron và electron

C. Prôton và nơtron D. Prôton, nơtron và electron

Câu 4: Chọn câu phát biểu đúng về cấu tạo của hạt nhân trong các phát biểu sau: Hạt nhân nguyên tử cấu tạo bởi:

A. Prôton và electron B. Nơtron và electron

C. Prôton và nơtron D. Prôton, nơtron và electron

Câu 5: Nguyên tố X có nguyên tử khối bằng 3,5 lần nguyên tử khối của oxi. X là nguyên tố nào sau đây?

A. Ca B. Na C. K D. Fe

Câu 6: Đơn chất là những chất được tạo nên từ bao nhiêu nguyên tố hoá học?

A. Từ 2 nguyên tố B. Từ 3 nguyên tố

C. Từ 4 nguyên tố trở lên D. Từ 1 nguyên tố

Câu 7: Chọn câu phát biểu đúng: Nước tự nhiên là:

A. một đơn chất B. một hợp chất

C. một chất tinh khiết D. một hỗn hợp

Câu 8: Kim loại M tạo ra Oxit: M2O3 . Phân tử khối của oxit là 102. Nguyên tử khối của M là:

A. 24 B. 27 C. 56 D. 64

Câu 9: Hãy chọn công thức hoá học đúng trong số các công thức hóa học sau đây, biết Ca(II), PO4(III)

A. CaPO4 B. Ca2(PO4)2 C. Ca3(PO4)2 D. Ca3(PO4)3

Câu 10: Hợp chất Alx(NO3)3 có phân tử khối là 213. Giá trị của x là :

A. 3 B. 2 C. 1 D. 4

Câu 11: Nguyên tố X có hoá trị III, SO4 (II) thức của muối của X và SO4 là

A. XSO4 B. X(SO4)3 C. X2(SO4)3 D. X3SO4

Câu 12: Biết N có hoá trị IV, hãy chọn công thức hoá học của N và O phù hợp với qui tác hoá trị trong đó có các công thức sau:

A. NO B. N2O C. N2O3 D. NO2

Câu 13: Biết S có hoá trị IV, hãy chọn công thức hoá học cảu S và O phù hợp với qui tắc hoá trị trong đó có các công thức sau:

A. S2O2 B.S2O3 C. SO3 D. SO3

Câu 14: Nguyên tử P có hoá trị V trong hợp chất nào sau đây?

A. P2O3 B. P2O5 C. P4O4 D. P4O10

Câu 44: Nguyên tử N có hoá trị III trong phân tử chất nào sau đây?

A. N2O5 B. NO2 C. NO D. N2O3

Câu 15: Hợp chất của nguyên tố X với O là X2O3 và hợp chất của nguyên tố Y với H là YH2. Công thức hoá học hợp chất của X với Y là:

A. XY B. X2Y C. XY2 D. X2Y3

CHƯƠNG II: PHẢN ỨNG HOÁ HỌC

Câu 16: Dấu hiệu nào giúp ta có khẳng định có phản ứng hoá học xảy ra?

A. Có chất kết tủa( chất không tan) C. Có chất khí thoát ra( sủi bọt)

B. Có sự thay đổi màu sắc D. Một trong số các dấu hiệu trên

Câu 17: Một vật thể bằng sắt để ngoài trời, sau một thời gian bị gỉ. Hỏi khối lượng của vật thay đổi thế nào so với khối lượng của vật trước khi gỉ?

A. Tăng B. Giảm C. Không thay đổi D. Không thể biết

Câu 18: Hiđro và oxi tác dụng với nhau tạo thành nước. Phương trình hoá học ở phương án nào dưới đây đã viết đúng?

A. 2H + O -> H2O B. H2 + O -> H2O

C. H2 + O2 -> 2H2O D. 2H2 + O2 -> 2H2O

Câu 19: Khí nitơ và khí hiđro tác dụng với nhau tạo khí amoniac(NH3). Phương trình hoá học ở phương án nào dưới đây đã viết đúng?

A. N + 3H -> NH3 B. N2 + H2 -> NH3

C. N2 + H2 ->2NH3 D. N2 + 3H2 ->2NH3

Câu 20: Đốt photpho(P) trong khí oxi(O2) thu được điphotphopentaoxit (P2O5). Phương trình phản ứng nào sau đây đã viết đúng?

A. 2P + 5O2 -> P2O5 B. 2P + O2 -> P2O5

C. 2P + 5O2 -> 2P2O5 D. 4P + 5O2 -> 2P2O5

Câu 21: Cho nhôm (Al tác dụng với axit sunfuaric(H2SO4) thu được muối nhôm sunfat ( Al2(SO4)3) và khí H2. Phương trình phản ứng nào sau đây đã viết đúng?

A. Al + H2SO4 -> Al2(SO4)3 + H2 B. 2Al + H2SO4 -> Al2(SO4)3 + H2

C. Al + 3H2SO4 -> Al2(SO4)3 + 3H2 D. 2Al + 3H2SO4 -> Al2(SO4)3 + 3H2

Câu 22: Khí CO2 được coi là ảnh hưởng đến môI trường vì:

A. Rất độc B. Tạo bụi cho môi trường

C. Làm giảm lượng mưa D. Gây hiệu ứng nhà kính

Câu 23: Khối lượng cácbon đã cháy là 4,5kg và khối lượng O2 đã phản ứng là 12kg. Khối lượng CO2 tạo ra là:

A. 16,2kg B. 16.3kg C. 16,4kg D.16,5kg

CHƯƠNG III: MOL VÀ TÍNH TOÁN HOÁ HỌC

Câu 24: 1 mol nước chứa số phân tử là:

A. 6,02.1023 B. 12,04.1023 C. 18,06.1023 D. 24,08.1023

Câu 25: Số mol phân tử N2 có trong 280g Nitơ là:

A. 9 mol B. 10 mol C. 11 mol D. 12mol

Câu 26: Phải lấy bao nhiêu lít khí CO2 ở đktc để có 0,5 mol phân tử CO2?

A. 11,2 lít B. 33,6 lít C. 16,8 lít D. 22,4 lít

Câu 27: Tìm dãy kết quả tất cả đúng về khối lượng(g) của những lượng chất(mol) sau: 0,25mol H2O, 1,75 mol NaCl, 2,5 mol HCl

A. 4,5g H2O, 102,375g NaCl, 81,25g HCl

B. 4,5g H2O, 92,375g NaCl, 91,25g HCl

C. 5,5g H2O, 102,375g NaCl, 91,25g HCl

D. 4,5g H2O, 102,375g NaCl, 91,25g HCl

Câu 28: Hai chất khí có thể tích bằng nhau( đo cùng nhệt độ và áp suất) thì:

A. Khối lượng của 2 khí bằng nhau C. Số mol của 2 khí bằng nhau

B. Số phân tử của 2 khí bằng D. B, C đúng

Câu 29: Khí nào nhẹ nhất trong tất cả các khí?

A. Khí Mêtan(CH4) B. Khí cacbon oxit( CO)

C. Khí Heli(He) D.Khí Hiđro (H2)

Câu 30: Tỉ khối của khí A đối với không khí là dA/KK < 1. Là khí nào trong các khí sau:

A. O2 B.H2S C. CO2 D. N2

Câu 31: Hợp chất trong đó sắt chiếm 70% khối lượng là hợp chất nào trong số các hợp chất sau:

A. FeO B. Fe2O3 C. Fe3O4 D.FeS

Câu 32: Oxit chứa 20% oxi về khối lượng và trong một oxit nguyên tố chưa biết có hoá trị II. Oxit có công thức hoá học là:

A. MgO B.ZnO C. CuO D. FeO

Câu 33: 4 mol nhuyên tử Canxi có khối lượng là:

A.80g B. 120g C. 160g D. 200g

Câu 34: 6,4g khí sunfuarơ SO2 qui thành số mol phân tử là:

A. 0,2 mol B. 0,5 mol C. 0,01 mol D. 0,1 mol

Câu 35: Số mol nguyên tử oxi có trong 36g nước là:

A. 1 mol B. 1,5 mol C. 2 mol D. 2,5 mol

Câu 36: 64g khí oxi ở điều kiện tiêu chuẩn có thẻ tích là:

A. 89,6 lít B. 44,8 lít C. 22,4 lít D. 11,2 lí

0
Giả thuyết PoincaréHenri Poincare (1854-1912), là nhà vật lý học và toán học người Pháp,một trong những nhà toán học lớn nhất thế kỷ 19. Giả thuyết Poincarédo ông đưa ra năm 1904 là một trong những thách thức lớn nhất của toán học thế kỷ 20Lấy một quả bóng (hoặc một vật hình cầu), vẽ trên đó một đường cong khép kín không có điểm cắt nhau, sau đó cắt quả bóng theo đường vừa vẽ:...
Đọc tiếp
  1. Giả thuyết Poincaré
    Henri Poincare (1854-1912), là nhà vật lý học và toán học người Pháp,
    một trong những nhà toán học lớn nhất thế kỷ 19. Giả thuyết Poincarédo ông đưa ra năm 1904 là một trong những thách thức lớn nhất của toán học thế kỷ 20

    Lấy một quả bóng (hoặc một vật hình cầu), vẽ trên đó một đường cong khép kín không có điểm cắt nhau, sau đó cắt quả bóng theo đường vừa vẽ: bạn sẽ nhận được hai mảnh bóng vỡ. Làm lại như vậy với một cái phao (hay một vật hình xuyến): lần này bạn không được hai mảnh phao vỡ mà chỉ được có một.
    Trong hình học topo, người ta gọi quả bóng đối lập với cái phao, là một về mặt liên thông đơn giản. Một điều rất dễ chứng minh là trong không gian 3 chiều, mọi bề mặt liên thông đơn giản hữu hạn và không có biên đều là bề mặt của một vật hình cầu.
    Vào năm 1904, nhà toán học Pháp Henri Poincaré đặt ra câu hỏi: Liệu tính chất này của các vật hình cầu có còn đúng trong không gian bốn chiều. Điều kỳ lạ là các nhà hình học topo đã chứng minh được rằng điều này đúng trong những không gian lớn hơn hoặc bằng 5 chiều, nhưng chưa ai chứng minh được tính chất này vẫn đúng trong không gian bốn chiều.
  2. Vấn đề P chống lại NP
    Với quyển từ điển trong tay, liệu bạn thấy tra nghĩa của từ “thằn lắn” dễ hơn, hay tìm một từ phổ thông để diễn tả “loài bò sát có bốn chân, da có vảy ánh kim, thường ở bờ bụi” dễ hơn? Câu trả lời hầu như chắc chắn là tra nghĩa thì dễ hơn tìm từ.
    Những các nhà toán học lại không chắc chắn như thế. Nhà toán học Canada Stephen Cook là người đầu tiên, vào năm 1971, đặt ra câu hỏi này một cách “toán học”. Sử dụng ngôn ngữ lôgic của tin học, ông đã định nghĩa một cách chính xác tập hợp những vấn đề mà người ta thẩm tra kết quả dễ hơn (gọi là tập hợp P), và tập hợp những vấn đề mà người ta dễ tìm ra hơn (gọi là tập hợp NP). Liệu hai tập hợp này có trùng nhau không? Các nhà lôgic học khẳng định P # NP. Như mọi người, họ tin rằng có những vấn đề rất khó tìm ra lời giải, nhưng lại dễ thẩm tra kết quả. Nó giống như việc tìm ra số chia của 13717421 là việc rất phức tạp, nhưng rất dễ kiểm tra rằng 3607 x 3808 = 13717421. Đó chính là nền tảng của phần lớn các loại mật mã: rất khó giải mã, nhưng lại dễ kiểm tra mã có đúng không. Tuy nhiên, cũng lại chưa có ai chứng minh được điều đó.
    “Nếu P=NP, mọi giả thuyết của chúng ta đến nay là sai” – Stephen Cook báo trước. “Một mặt, điều này sẽ giải quyết được rất nhiều vấn đề tin học ứng dụng trong công nghiệp; nhưng mặt khác lại sẽ phá hủy sự bảo mật của toàn bộ các giao dịch tài chính thực hiện qua Internet”. Mọi ngân hàng đều hoảng sợ trước vấn đề lôgic nhỏ bé và cơ bản này!
  3. Các phương trình của Yang-Mills
    Các nhà toán học luôn chậm chân hơn các nhà vật lý. Nếu như từ lâu, các nhà vật lý đã sử dụng các phương trình của Yang-Mills trong các máy gia tốc hạt trên toàn thế giới, thì các ông bạn toán học của họ vẫn không thể xác định chính xác số nghiệm của các phương trình này.
    Được xác lập vào những năm 50 bởi các nhà vật lý Mỹ Chen Nin Yang và Robert Mills, các phương trình này đã biểu diễn mối quan hệ mật thiết giữa vật lý về hạt cơ bản với hình học của các không gian sợi. Nó cũng cho thấy sự thống nhất của hình học với phần trung tâm của thể giới lượng tử, gồm tương tác tác yếu, mạnh và tương tác điện từ. Nhưng hiện nay, mới chỉ có các nhà vật lý sử dụng chúng…
  4. Giả thuyết Hodge
    Euclide sẽ không thể hiểu được gì về hình học hiện đại. Trong thế kỷ XX, các đường thẳng và đường tròn đã bị thay thế bởi các khái niệm đại số, khái quát và hiệu quả hơn. Khoa học của các hình khối và không gian đang dần dần đi tới hình học của “tính đồng đẳng”. Chúng ta đã có những tiến bộ đáng kinh ngạc trong việc phân loại các thực thể toán học, nhưng việc mở rộng các khái niệm đã dẫn đến hậu quả là bản chất hình học dần dần biến mất trong toán học. Vào năm 1950, nhà toán học người Anh William Hodge cho rằng trong một số dạng không gian, các thành phần của tính đồng đẳng sẽ tìm lại bản chất hình học của chúng…
  5. Giả thuyết Riemann
    2, 3, 5, 7, …, 1999, …, những số nguyên tố, tức những số chỉ có thể chia hết cho 1 và chính nó, giữ vai trò trung tâm trong số học. Dù sự phân chia các số này dường như không theo một quy tắc nào, nhưng nó liên kết chặt chẽ với một hàm số do thiên tài Thụy Sĩ Leonard Euler đưa ra vào thế kỷ XVIII. Đến năm 1850, Bernard Riemann đưa ra ý tưởng các giá trị không phù hợp với hàm số Euler được sắp xếp theo thứ tự. Giả thuyết của nhà toán học người Đức này chính là một trong 23 vấn đề mà Hilbert đã đưa ra cách đây 100 năm. Giả thuyết trên đã được rất nhiều nhà toán học lao vào giải quyết từ 150 năm nay. Họ đã kiểm tra tính đúng đắn của nó trong 1.500.000.000 giá trị đầu tiên, nhưng … vẫn không sao chứng minh được. “Đối với nhiều nhà toán học, đây là vấn đề quan trọng nhất của toán học cơ bản” – Enrico Bombieri, giáo sư trường Đại học Princeton, cho biết. Và theoDavid Hilbert, đây cũng là một vấn đề quan trọng đặt ra cho nhân loại. Bernhard Riemann (1826-1866) là nhà toán học Đức.
    Giả thuyết Riemann do ông đưa ra năm 1850 là một bài toán có vai trò cực kỳ quan trọng đến cả lý thuyết số lẫn toán học hiện đại.
  6. Các phương trình của Navier-Stokes
    Chúng mô tả hình dạng của sóng, xoáy lốc không khí, chuyển động của khí quyển và cả hình thái của các thiên hà trong thời điểm nguyên thủy của vũ trụ. Chúng được Henri Navier và George Stokes đưa ra cách đây 150 năm. Chúng chỉ là sự áp dụng các định luật về chuyển động của Newton vào chất lỏng và chất khí. Tuy nhiên, những phương trình của Navier-Stokes đến nay vẫn là một điều bí ẩn của toán học: người ta vẫn chưa thể giải hay xác định chính xác số nghiệm của phương trình này. “Thậm chí người ta không thể biết là phương trình này có nghiệm hay không” – nhà toán học người Mỹ Charles Fefferman nhấn mạnh – “Điều đó cho thấy hiểu biết của chúng ta về các phương trình này còn hết sức ít ỏi”.
  7. Giả thuyết của Birch và Swinnerton-Dyer
    Những số nguyên nào là nghiệm của phương trình x^2 + y^2 = z^2 ? có những nghiệm hiển nhiên, như 3^2 + 4^2 = 5^2. Và cách đây hơn 2300 năm, Euclide đã chứng minh rằng phương trình này có vô số nghiệm. hiển nhiên vấn đề sẽ không đơn giản như thế nếu các hệ số và số mũ của phương trình này phức tạp hơn… Người ta cũng biết từ 30 năm nay rằng không có phương pháp chung nào cho phép tìm ra số các nghiệm nguyên của các phương trình dạng này. Tuy nhiên, đối với nhóm phương trình quan trọng nhất có đồ thị là các đường cong êlip loại 1, các nhà toán học người Anh Bryan Birch và Peter Swinnerton-Dyer từ đầu những năm 60 đã đưa ra giả thuyết là số nghiệm của phương trình phụ thuộc vào một hàm số f: nếu hàm số f triệt tiêu tại giá trị bằng 1 (nghĩa là nếu f(1)= 0), phương trình có vô số nghiệm. nếu không, số nghiệm là hữu hạn.
    Giả thuyết nói như thế, các nhà toán học cũng nghĩ vậy, nhưng đến giờ chưa ai chứng minh được…

    Người ta thấy vắng bóng ngành Giải tích hàm (Functional analysí) vốn được coi là lãnh vực vương giả của nghiên cứu toán học. Lý do cũng đơn giản : những bài toán quan trọng nhất của Giải tích hàm vừa mới được giải quyết xong, và người ta đang đợi để tìm được những bài toán mới. Một nhận xét nữa : 7 bài toán đặt ra cho thế kỉ 21, mà không phải bài nào cũng phát sinh từ thế kỉ 20. Bài toán P-NP (do Stephen Cook nêu ra năm 1971) cố nhiên là bài toán mang dấu ấn thế kỉ 20 (lôgic và tin học), nhưng bài toán số 4 là giả thuyết Riemann đã đưa ra từ thế kỉ 19. Và là một trong 3 bài toán Hilbert chưa được giải đáp !
    Một giai thoại vui: Vài ngày trước khi 7 bài toán 1 triệu đôla được công bố, nhà toán học Nhật Bản Matsumoto (sống và làm việc ở Paris) tuyên bố mình đã chứng minh được giả thuyết Riemann. Khổ một nỗi, đây là lần thứ 3 ông tuyên bố như vậy. Và cho đến hôm nay, vẫn chưa biết Matsumoto có phải là nhà toán học triệu phú đầu tiên của thế kỉ 21 hay chăng..
9
17 tháng 3 2016

đền tiền thuốc mắt đi ! đọc xong hoa hít mắt rùi

17 tháng 3 2016

hay quá, h em rồi em h lại cho