K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 2 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le m\end{matrix}\right.\)

Hệ có nghiệm duy nhất \(\Leftrightarrow m=2\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+1\right)x\ge6\\2x\le6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{6}{m^2+1}\\x\le3\end{matrix}\right.\)

Hệ có nghiệm duy nhất \(\Leftrightarrow\dfrac{6}{m^2+1}=3\)

\(\Leftrightarrow m=\pm1\)

c.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+9\ge x^2+7x+1\\5x\ge2m-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{8}{13}\\x\ge\dfrac{2m-8}{5}\end{matrix}\right.\)

Pt có nghiệm duy nhất khi \(\dfrac{2m-8}{5}=\dfrac{8}{13}\Leftrightarrow m=\dfrac{72}{13}\)

NV
6 tháng 2 2021

d.

Hệ có nghiệm duy nhất khi:

TH1:

 \(\left\{{}\begin{matrix}m>0\\\dfrac{m-3}{m}=\dfrac{m-9}{m+3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-9=m^2-9m\end{matrix}\right.\) \(\Leftrightarrow m=1\)

TH2:

\(\left\{{}\begin{matrix}m+3< 0\\\dfrac{m-3}{m}=\dfrac{m-9}{m+3}\end{matrix}\right.\)

\(\Leftrightarrow m=1\) (ktm)

Vậy \(m=1\)

e.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-1\right)x\ge-2m+3\\\left(4-4m\right)x\le3\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi:

\(\left\{{}\begin{matrix}\left(2m-1\right)\left(4-4m\right)>0\\\dfrac{-2m+3}{2m-1}=\dfrac{3}{4-4m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}< m< 1\\\left[{}\begin{matrix}m=\dfrac{3}{4}\\m=\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow m=\dfrac{3}{4}\)

23 tháng 2 2021

\(\left\{{}\begin{matrix}x^2-3x+2\le0\\mx+1-m\le0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}1\le x\le2\\x\le\dfrac{-1+m}{m}\end{matrix}\right.\)

để hpt trên có nghiệm thì \(\dfrac{-1+m}{m}\le2\) ĐK m ≠ 0

\(< =>m\ge-1\)

Vậy .....

 

NV
23 tháng 2 2021

\(x^2-3x+2\le0\Leftrightarrow1\le x\le2\) \(\Rightarrow D_1=\left[1;2\right]\)

Xét \(mx\le m-1\)

- Với \(m=0\) BPT vô nghiệm

- Với \(m>0\Leftrightarrow x\le\dfrac{m-1}{m}\) \(\Rightarrow D_2=(-\infty;\dfrac{m-1}{m}]\)

Hệ có nghiệm khi \(D_1\cap D_2\ne\varnothing\)

\(\Leftrightarrow\dfrac{m-1}{m}\ge1\) \(\Rightarrow\) không tồn tại m thỏa mãn

- Với \(m< 0\Leftrightarrow x\ge\dfrac{m-1}{m}\Rightarrow D_2=[\dfrac{m-1}{m};+\infty)\)

\(D_1\cap D_2\ne\varnothing\Leftrightarrow\dfrac{m-1}{m}\le2\)

\(\Leftrightarrow m-1\ge2m\Rightarrow m\le-1\)

Vậy \(m\le-1\)

NV
21 tháng 2 2021

Xét \(-x^2+2x+3\le0\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge3\end{matrix}\right.\)

Xét \(x+2m-1>0\Leftrightarrow x>-2m+1\)

Hệ đã cho có nghiệm với mọi m (đều chứa khoảng dương vô cùng)

21 tháng 2 2021

\(\left\{{}\begin{matrix}-x^2+2x+3\le0\\x+2m-1>0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}-1\le x\le3\\x>-2m+1\end{matrix}\right.\)

 để pt ....thì \(-2m+1< 3\)

<=>\(-2m< 2\)

<=> \(m>1\)

vậy pt .....

12 tháng 3 2021

Bài 1 \(\left\{{}\begin{matrix}x^2-3x-4\le0\\\left(m-1\right)x\ge2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le4\\\left(m-1\right)x\ge2\end{matrix}\right.\)

Nếu m = 1, hệ vô nghiệm

Nếu m ≠ 1, hệ tương đương

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\x\le\dfrac{2}{m-1}\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\x\ge\dfrac{2}{m-1}\end{matrix}\right.\end{matrix}\right.\)

Hệ có nghiệm khi một trong hai hệ trong hệ ngoặc vuông có nghiệm ⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\\dfrac{2}{m-1}\ge-1\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\\dfrac{2}{m-1}\le4\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\-2\le1-m\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\2\le4m-4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1\le m< 1\\\dfrac{3}{2}\le m\le4\end{matrix}\right.\)

 

NV
12 tháng 4 2020

\(x^2-\left(2m+1\right)x+m^2+m\le0\)

\(\Leftrightarrow\left(x-m\right)\left(x-m-1\right)\le0\)

\(\Rightarrow m\le x\le m+1\)

Để hệ có nghiệm \(\Leftrightarrow f\left(x\right)=x^2-2x+1\le m\left(1\right)\) có nghiệm thuộc \(\left[m;m+1\right]\)

\(\Leftrightarrow m\ge\min\limits_{\left[m;m+1\right]}\left(x^2-2x+1\right)\)

- TH1: \(m\le1\le m+1\Rightarrow0\le m\le1\)

\(\Rightarrow f\left(x\right)_{min}=f\left(1\right)=0\Rightarrow m\ge0\Rightarrow0\le m\le1\)

- TH2: \(m>1\Rightarrow f\left(x\right)\) đồng biến trên \(\left[m;m+1\right]\)

\(\Rightarrow f\left(x\right)_{min}=f\left(m\right)=m^2-2m+1\)

\(\Rightarrow m\ge m^2-2m+1\Leftrightarrow m^2-3m+1\le0\)

\(\Rightarrow\frac{3-\sqrt{5}}{2}\le m\le\frac{3+\sqrt{5}}{2}\)

Kết hợp điều kiên \(\Rightarrow1< m\le\frac{3+\sqrt{5}}{2}\)

Vậy với \(0\le m\le\frac{3+\sqrt{5}}{2}\) thì BPT đã cho có nghiệm

18 tháng 1 2021

Với m = 0 ta có hpt \(\left\{{}\begin{matrix}2y=1\\2x=-1\end{matrix}\right.\). HPT này không có nghiệm nguyên.

Xét \(m\neq 0\).

Để hpt có nghiệm duy nhất thì: \(\dfrac{m}{2}\ne\dfrac{2}{m}\Leftrightarrow m\ne\pm2\).

HPT \(\Leftrightarrow\left\{{}\begin{matrix}2mx+4y=2m+2\\2mx+m^2y=2m^2-m\end{matrix}\right.\Rightarrow\left(m^2-4\right)y=2m^2-3m-2\).

\(\Rightarrow y=\dfrac{2m^2-3m-2}{m^2-4}=\dfrac{2m+1}{m+2}\).

Từ đó ta có \(x=\dfrac{m+1-\dfrac{2\left(2m+1\right)}{m+2}}{m}=\dfrac{m^2+3m+2-4m-2}{m\left(m+2\right)}=\dfrac{m^2-m}{m\left(m+2\right)}=\dfrac{m-1}{m+2}\).

Vậy m là các số sao cho \(\dfrac{2m+1}{m+2}\) là số nguyên (Do \(\dfrac{2m+1}{m+2}-\dfrac{m-1}{m+2}=1\) là số nguyên).