Tìm x biết :|x+1| + |2x+15| + |3x+6041| = 7x
giúp em với mọi người đang cần gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3x-5 ⋮ x+2
+ (x+2) ⋮ (x+2)
⇒ 3(x+2) ⋮ (x+2)
⇒3x+6 ⋮ x+2
mà 3x-5 ⋮ x+2
⇒ 3x-5-(3x+6) ⋮ x+2
⇒ 3x-5-3x-6 ⋮ x+2
⇒ 3x-3x-5-6 ⋮ x+2
⇒-1 ⋮ x+2
⇒ x+2=-1
x =-1+2
x =1
vậy x=1
*câu b bnj cho đề bài rõ ràng hơn nhé
nếu đúng thì tích đúng cho mình nha
Câu 2:
\(A\left(x\right)=x^2+3x+1\)
\(B\left(x\right)=2x^2-2x-3\)
a) Tính A(x) là sao em?
b) \(A\left(x\right)+B\left(x\right)=\left(x^2+3x+1\right)+\left(2x^2-2x-3\right)\)
\(=x^2+3x+1+2x^2-2x-3\)
\(=\left(x^2+2x^2\right)+\left(3x-2x\right)+\left(1-3\right)\)
\(=3x^2+x-2\)
Câu 1:
\(M\left(x\right)=x^3+3x-2x-x^3+2\)
\(=\left(x^3-x^3\right)+\left(3x-2x\right)+2\)
\(=x+2\)
Bậc của M(x) là 1
`A(x)=0`
`<=>4x(x-1)-3x+3=0`
`<=>4x(x-1)-3(x-1)=0`
`<=>(x-1)(4x-3)=0`
`<=>` $\left[ \begin{array}{l}x=1\\x=\dfrac341\end{array} \right.$
`B(x)=0`
`<=>2/3x^2+x=0`
`<=>x(2/3x+1)=0`
`<=>` $\left[ \begin{array}{l}x=0\\x=-\dfrac32\end{array} \right.$
`C(x)=0`
`<=>2x^2-9x+4=0`
`<=>2x^2-8x-x+4=0`
`<=>2x(x-4)-(x-4)=0`
`<=>(x-4)(2x-1)=0`
`<=>` $\left[ \begin{array}{l}x=4\\x=\dfrac12\end{array} \right.$
\(y=\dfrac{2x-1}{x+m}\Rightarrow y'=\dfrac{2m+1}{\left(x+m\right)^2}\)
Hàm nghịch biến trên miền xác định khi:
\(2m+1< 0\Rightarrow m< -\dfrac{1}{2}\)
\(E=-3x^2-x+6=-3\left(x^2+\dfrac{x}{3}\right)+6=-3\left(x^2+2x.\dfrac{1}{6}\right)+6=-3\left(x^2+2x.\dfrac{1}{6}+\dfrac{1}{36}\right)+6+\dfrac{1}{12}\le-3.0+6+\dfrac{1}{12}=6\dfrac{1}{12}\)
cái này ko tìm dc Min nha bạn (với x dương thì x càng lớn E càng nhỏ)
Lời giải:
a. $9x^2-16-(3x-4)(2x+5)=0$
$\Leftrightarrow [(3x)^2-4^2]-(3x-4)(2x+5)=0$
$\Leftrightarrow (3x-4)(3x+4)-(3x-4)(2x+5)=0$
$\Leftrightarrow (3x-4)(3x+4-2x-5)=0$
$\Leftrightarrow (3x-4)(x-1)=0$
$\Leftrightarrow 3x-4=0$ hoặc $x-1=0$
$\Leftrightarrow x=\frac{4}{3}$ hoặc $x=1$.
b.
$x^2+4x=12$
$\Leftrightarrow x^2+4x-12=0$
$\Leftrightarrow (x^2-2x)+(6x-12)=0$
$\Leftrightarrow x(x-2)+6(x-2)=0$
$\Leftrightarrow (x-2)(x+6)=0$
$\Leftrightarrow x-2=0$ hoặc $x+6=0$
$\Leftrightarrow x=2$ hoặc $x=-6$
c.
$x^2-2x=35$
$\Leftrightarrow x^2-2x-35=0$
$\Leftrightarrow (x^2+5x)-(7x+35)=0$
$\Leftrightarrow x(x+5)-7(x+5)=0$
$\Leftrightarrow (x+5)(x-7)=0$
$\Leftrightarrow x+5=0$ hoặc $x-7=0$
$\Leftrightarrow x=-5$ hoặc $x=7$
Vì GTTĐ luôn lớn hơn hoặc bằng 0 với mọi x, do đó :
\(\left|x+1\right|+\left|2x+15\right|+\left|3x+6041\right|\ge0\forall x\)
\(\Leftrightarrow7x\ge0\)
\(\Leftrightarrow x\ge0\)
Từ điều kiện này của x ta có phương trình :
\(x+1+2x+15+3x+6041=7x\)
\(\Leftrightarrow6x+6057=7x\)
\(\Leftrightarrow7x-6x=6057\)
\(\Leftrightarrow x=6057\)
Vậy tập nghiệm của pt là S = { 6057 }