Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính giá trị của biểu thức
x^2016 + x^2015+ x^2014+...+x+1 tại x =2
\(A=1+2+...+2^{2015}+2^{2016}\)
\(2A=2+2^2+...+2^{2016}+2^{2017}\)
\(2A-A=\left(2+2^2+...+2^{2017}\right)-\left(1+2+...+2^{2016}\right)\)
\(A=2^{2017}-1\)
\(B=2^{2016}+2^{2015}+2^{2014}+...+2+1\)
\(\Rightarrow B=1+2+...+2^{2014}+2^{2015}+2^{2016}\)
\(\Rightarrow2B=2+2^2+...+2^{2015}+2^{2016}+2^{2017}\)
\(\Rightarrow2B-B=2^{2017}-1\Rightarrow B=2^{2017}-1\)
\(A=1+2+...+2^{2015}+2^{2016}\)
\(2A=2+2^2+...+2^{2016}+2^{2017}\)
\(2A-A=\left(2+2^2+...+2^{2017}\right)-\left(1+2+...+2^{2016}\right)\)
\(A=2^{2017}-1\)
\(B=2^{2016}+2^{2015}+2^{2014}+...+2+1\)
\(\Rightarrow B=1+2+...+2^{2014}+2^{2015}+2^{2016}\)
\(\Rightarrow2B=2+2^2+...+2^{2015}+2^{2016}+2^{2017}\)
\(\Rightarrow2B-B=2^{2017}-1\Rightarrow B=2^{2017}-1\)