năm mới chúc mọi người vui vẻ
1+1=?
có bạn nào vẫn FA như mình ko
girl2k6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
35+25=3600
=> Khi (35+25) giờ=3600 phút hoặc (35+25) phút=3600 giây
6+6=81
=>Xoay dấu (+) thành(x) và chuyển(6) thành(9)
Ta được: 9x9=81
Hoặc: đảo (81) thành (18)
@Taoyewmay
Em xin giải bài toán kia nhé :)
Trước hết ta có hằng đẳng thức:
\(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5=\left(x+y\right)^5\)
Biến đổi hằng đẳng thức trên:
\(x^5+y^5+5xy\left(x^3+2x^2y+2xy^2+y^3\right)=\left(x+y\right)^5\)
\(\Rightarrow x^5+y^5+5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]=\left(x+y\right)^5\)
\(\Rightarrow x^5+y^5+5xy\left(x+y\right)\left(x^2+xy+y^2\right)=\left(x+y\right)^5\) (*)
Quay lại bài toán trên:
Theo BĐT Cauchy ta có:
\(\left\{{}\begin{matrix}\sqrt{xy}\le\dfrac{x+y}{2}\left(1\right)\\2xy\le x^2+y^2\Rightarrow3xy\le x^2+xy+y^2\Rightarrow xy\le\dfrac{x^2+xy+y^3}{3}\left(2\right)\end{matrix}\right.\)
Vì cả 2 vế của BĐT (1) và (2) đều dương nên lấy \(\left(1\right).\left(2\right)\) ta được:
\(xy\sqrt{xy}\le\dfrac{1}{6}\left(x+y\right)\left(x^2+xy+y^2\right)\)
\(\Rightarrow x^5+2023xy.xy\sqrt{xy}+y^5\le x^5+\dfrac{2023}{6}xy.\left(x+y\right)\left(x^2+xy+y^2\right)+y^5\left(3\right)\)
Đặt \(A=x^5+\dfrac{2023}{6}xy.\left(x+y\right)\left(x^2+xy+y^2\right)+y^5\)
\(=\dfrac{6x^5+2023xy\left(x+y\right)\left(x^2+xy+y^2\right)+6y^5}{6}\)
\(=\dfrac{6\left[x^5+5xy\left(x+y\right)\left(x^2+xy+y^2\right)+y^5\right]+1993xy\left(x+y\right)\left(x^2+xy+y^2\right)}{6}\)
Áp dụng (*) ta có:
\(A=\dfrac{6\left(x+y\right)^5+1993xy\left(x+y\right)\left(x^2+xy+y^2\right)}{6}\left(4\right)\)
Ta có: \(xy\left(x+y\right)\left(x^2+xy+y^2\right)\)
\(=\dfrac{1}{3}.3xy\left(x^2+xy+y^2\right)\left(x+y\right)\)
Theo BĐT Cauchy ta có:
\(3xy\left(x^2+xy+y^2\right)\le\left[\dfrac{3xy+\left(x^2+xy+y^2\right)}{2}\right]^2=\left[\dfrac{\left(x+y\right)^2+2xy}{2}\right]^2\left('\right)\)
\(xy\le\left(\dfrac{x+y}{2}\right)^2=\dfrac{\left(x+y\right)^2}{4}\left(''\right)\)
Từ (') và ('') ta có:
\(3xy\left(x^2+xy+y^2\right)\le\left[\dfrac{\left(x+y\right)^2+2.\dfrac{\left(x+y\right)^2}{4}}{2}\right]^2=\left[\dfrac{3}{4}\left(x+y\right)^2\right]^2=\dfrac{9}{16}\left(x+y\right)^4\)
\(\Rightarrow xy\left(x^2+xy+y^2\right)\le\dfrac{3}{16}\left(x+y\right)^4\)
\(\Rightarrow xy\left(x+y\right)\left(x^2+xy+y^2\right)\le\dfrac{3}{16}\left(x+y\right)^5\left(5\right)\)
Từ (4), (5) ta có:
\(A\le\dfrac{6\left(x+y\right)^5+1993.\dfrac{3}{16}\left(x+y\right)^5}{6}=\dfrac{\dfrac{6075}{16}\left(x+y\right)^5}{6}=\dfrac{2025}{32}\left(x+y\right)^5\)
\(\Rightarrow A\le\dfrac{2025}{32}\left(x+y\right)^5\) hay
\(x^5+\dfrac{2023}{6}xy\left(x+y\right)\left(x^2+xy+y^2\right)+y^5\le\dfrac{2025}{32}\left(x+y\right)^5\left(6\right)\)
Từ (3), (6) ta có:
\(x^5+2023x^2y^2\sqrt{xy}+y^5\le\dfrac{2025}{32}\left(x+y\right)^5\)
\(\Rightarrow\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}\le\sqrt[5]{2025}.\dfrac{x+y}{2}\left(1'\right)\)
Mặt khác theo BĐT Cauchy ta có:
\(\sqrt{xy}\le\dfrac{x+y}{2}\left(2'\right)\)
Vì cả 2 vế của (1') và (2') đều dương nên lấy \(\left(1'\right).\left(2'\right)\) ta được:
\(\sqrt{xy}.\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}\le\sqrt[5]{2025}.\dfrac{\left(x+y\right)^2}{4}\)
\(\Rightarrow\dfrac{\dfrac{1}{\sqrt{xy}}}{\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}}\ge\dfrac{4}{\sqrt[5]{2025}.\left(x+y\right)^2}\left(7\right)\)
CMTT ta cũng có:
\(\dfrac{\dfrac{1}{\sqrt{yz}}}{\sqrt[5]{y^5+2023y^2z^2\sqrt{yz}+y^5}}\ge\dfrac{4}{\sqrt[5]{2025}.\left(y+z\right)^2}\left(8\right)\)
\(\dfrac{\dfrac{1}{\sqrt{zx}}}{\sqrt[5]{z^5+2023z^2x^2\sqrt{zx}+z^5}}\ge\dfrac{4}{\sqrt[5]{2025}.\left(z+x\right)^2}\left(9\right)\)
Lấy \(\left(7\right)+\left(8\right)+\left(9\right)\) rồi nhân mỗi vế của BĐT mới cho \(\left(x+y+z\right)^2\) ta được:
\(\left(x+y+z\right)^2\left(\dfrac{\dfrac{1}{\sqrt{xy}}}{\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}}+\dfrac{\dfrac{1}{\sqrt{yz}}}{\sqrt[5]{y^5+2023y^2z^2\sqrt{yz}+y^5}}+\dfrac{\dfrac{1}{\sqrt{zx}}}{\sqrt[5]{z^5+2023z^2x^2\sqrt{zx}+z^5}}\right)\)\(\ge\dfrac{4}{\sqrt[5]{2025}}\left(x+y+z\right)^2\left[\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(y+z\right)^2}+\dfrac{1}{\left(z+x\right)^2}\right]\left(10\right)\)
Theo BĐT Cauchy ta có:
\(\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(y+z\right)^2}+\dfrac{1}{\left(z+x\right)^2}\ge3.\sqrt[3]{\dfrac{1}{\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2}}\)
\(\ge3.\sqrt[3]{\dfrac{1}{\left[\left(\dfrac{x+y+y+z+z+x}{3}\right)^3\right]^2}}\)
\(=3.\sqrt[3]{\dfrac{1}{\left[\dfrac{2}{3}\left(x+y+z\right)\right]^6}}=3.\dfrac{1}{\left[\dfrac{2}{3}\left(x+y+z\right)\right]^2}=\dfrac{27}{4\left(x+y+z\right)^2}\)
\(\Rightarrow\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(y+z\right)^2}+\dfrac{1}{\left(z+x\right)^2}\ge\dfrac{27}{4\left(x+y+z\right)^2}\left(11\right)\)
Từ (10) và (11) ta có:
\(\left(x+y+z\right)^2\left(\dfrac{\dfrac{1}{\sqrt{xy}}}{\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}}+\dfrac{\dfrac{1}{\sqrt{yz}}}{\sqrt[5]{y^5+2023y^2z^2\sqrt{yz}+y^5}}+\dfrac{\dfrac{1}{\sqrt{zx}}}{\sqrt[5]{z^5+2023z^2x^2\sqrt{zx}+z^5}}\right)\)
\(\ge\dfrac{4}{\sqrt[5]{2023+2}}.\left(x+y+z\right)^2.\dfrac{27}{4\left(x+y+z\right)^2}=\dfrac{27}{\sqrt[5]{2023+2}}\left(đpcm\right)\)
Dấu "=" xảy ra khi \(x=y=z\)
lâu rồi không gặp a, chúc mừng năm mới a, mà cái phương trình này lớp 9 còn e mới lớp 8 :)))))))))))))))
mk cũng chúc bạn năm mới học giỏi và ngoan ngoãn nghe lời bố mẹ
Tuy hôm nay là ngày 7/1/2018 rồi nhưng mình cũng muốn chúc các bạn năm mới sẽ có nhiều điều thật may mắn nên mình mong các bạn ẽ !HiHi!! :)
Năm.mới vui vẻ .
Chúc gđ các bn thành viên làm mộ năm mới ít lành, vạn sụe như ý. Chòi, tết mà mik cảm thấy chỉ vui song ương thôi
\(1+1=2\)
~ học tốt ~
1 + 1 = 2
~~Năm mới , chúc mọi người vui vẻ bên gia đình, bạn bè và người thân nha !~~