K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2019

x,y,z tỉ lệ với 3;5;7 hay \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=k\)

\(\Rightarrow x=3k;y=5k;z=7k\)

Thay lần lượt x,y,z vào biểu thức và tính như bình thường

26 tháng 10 2018

bạn giải đi bạn

27 tháng 10 2018

Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)

Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:

\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)

\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)

\(A=\dfrac{12x^3y^4z^5}{4x^2y^3z^4}=3xyz=3\cdot3\cdot3\cdot2018=54486\)

26 tháng 10 2018

Xét \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\) (1)

Thay (1) vào P

=> P = \(\dfrac{3k+2.4k+3.5k}{2.5k+3.4k+4.5k}+\dfrac{2.5k+3.4k+4.5k}{3.3k+4.4k+5.5k}\) + \(\dfrac{3.3k+4.4k+5.5k}{4.3k+5.4k+6.5k}\)

=> P = \(\dfrac{26k}{42k}+\dfrac{42k}{50k}\) + \(\dfrac{50k}{62k}\)

=> P = \(\dfrac{13}{21}+\dfrac{21}{25}+\dfrac{25}{31}\approx2,265499232\)

26 tháng 10 2018

lộn đề .

Thay 2z + 3y + 4z = 2x+ 3y + 4z nha

Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

\(2\left(x+y\right)^2\ge0\forall x,y\)

Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi 

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)

Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được: 

\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)

\(=0^{2016}+1^{2017}+0^{2018}=1\)

Vậy: M=1

\(N=3x^4+3x^2y^2+x^2y^2+y^4+2y^2\)

\(=\left(x^2+y^2\right)\left(3x^2+y^2\right)+2y^2\)

\(=3x^2+3y^2=3\)

31 tháng 7 2017

Ta thấy \(4x^2+17xy+9y^2=5xy-\left|y-2\right|\)

\(\Leftrightarrow4x^2+12xy+9y^2=-\left|y-2\right|\Leftrightarrow\left(2x+3y\right)^2=-\left|y-2\right|\)

Do \(\left(2x+3y\right)^2\ge0;-\left|y-2\right|\le0\) nên dấu bằng xảy ra khi và chỉ khi \(\hept{\begin{cases}y-2=0\\2x+3y=0\end{cases}}\Rightarrow\hept{\begin{cases}y=2\\x=-3\end{cases}}\)

Thay vào M ta có \(M=\left(-3\right)^3+2.2+3.\left(-3\right)^2.2=31\)

21 tháng 4 2020

a)\(\frac{-1}{4}x^2y-\frac{1}{4}x^2y=-\frac{1}{2}x^2y.\)

thay x=1,y=-1 vào ta được:

\(-\frac{1}{2}.1^2.\left(-1\right)=\frac{1}{2}.\)

b)\(3x^2y^3+3x^2y^3=6x^2y^3.\)

thay x=1,y=-1 vào ta được:

\(6.1^2.\left(-1\right)^3=6.1.\left(-1\right)=-6.\)

c) \(6x^3y^4z-4x^3y^4z=2x^3y^4z.\)

Thay x=1,y=-1,z=2 vào ta được:

\(2.1^3.\left(-1\right)^4.2=2.1.1.2=4.\)

d) Thay x=1,y=-1,z=2 vào ta được:

\(1-2.\left(-1\right)^2+2^3=1-2+8=7.\)

Đầy đủ quá rồi đấy. Giữ lời hứa nha

Học tốt