Trong mặt phẳng tọa độ Oxy , cho điểm I(2;1). Tìm tọa độ các điểm A,B tương ứng thuộc các tia Ox, Oy sao cho tổng IA+IB+AB có độ dài nhỏ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$I$ là trung điểm $AB$ nên:
\(\left\{\begin{matrix}
\frac{x_A+x_B}{2}=x_I\\
\frac{y_A+y_B}{2}=y_I\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x_B=2x_I-x_A\\
y_B=2y_I-y_A\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x_B=2.0-1=-1\\ y_B=2(-2)-0=-4\end{matrix}\right.\)
Vậy $B(-1,-4)$
Tọa độ điểm I của đoạn thẳng MN là:
x I = x M + x N 2 = 0 + ( − 3 ) 2 = − 3 2 y I = y M + y N 2 = 4 + 2 2 = 3 ⇒ I − 3 2 ; 3
Đáp án C
Lời giải:
Gọi $M'(a,b)$ là ảnh của $M$ qua phép vị tự $V,I$
a. Ta có:
\(\overrightarrow{OM'}=-2\overrightarrow{OM}\Leftrightarrow (a,b)=-2(2,1)=(-4,-2)\)
Vậy $M'(-4,-2)$
b. \(\overrightarrow{IM'}=4\overrightarrow{IM}\Leftrightarrow (a+1,b-3)=4(3, -2)\)
\(\Leftrightarrow \left\{\begin{matrix} a+1=4.3=12\\ b-3=4(-2)=-8\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=11\\ b=-5\end{matrix}\right.\)
Đáp án C
Phương pháp: M và M’ đối xứng qua I nên I là trung điểm của MM’.
Cách giải: M và M’ đối xứng qua I nên I là trung điểm của MM’.
Ta có
Phép vị tự tâm I(1; 2) tỉ số k = 5 biến điểm M(2; -3) thành điểm M’(x; y)
⇔ I M ' → = 5 I M → ⇔ x − 1 = 5 2 − 1 y − 2 = 5 − 3 − 2 ⇔ x = 6 y = − 23
Suy ra M’(6; -23).
Đáp án C