K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: (d1); y=4mx-(m+5)

=m(4x-1)-5

Điểm mà (d1) luôn đi qua có tọa độ là:

4x-1=0 và y=-5

=>x=1/4 và y=-5

(d2): \(y=\left(3m^2+1\right)x+m^2-4\)

=3m^2x+3x+m^2-4

=m^2(3x+1)+3x-4

ĐIểm mà (d2) luôn đi qua có tọa độ là:

3x+1=0 và y=3x-4

=>x=-1/3 và y=-1-4=-5

b: A(1/4;-5); B(-1/3;-5)

\(AB=\sqrt{\left(-\dfrac{1}{3}-\dfrac{1}{4}\right)^2+\left(-5+5\right)^2}=\dfrac{7}{12}\)

c: Để hai đường song song thì

\(\left\{{}\begin{matrix}3m^2+1=4m\\m^2-4+m+5< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m-1\right)\left(3m-1\right)=0\\m^2+m+1< >0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=\dfrac{1}{3}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
27 tháng 11 2017

Lời giải:

Xét (d1)

\(y=4mx-(m+5)\)

\(\Leftrightarrow m(4x-1)-(5+y)=0\)

Để pt đúng với mọi $m$ thì:

\(\left\{\begin{matrix} 4x-1=0\\ 5+y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{1}{4}\\ y=-5\end{matrix}\right.\)

Vậy điểm A cố định khi m thay đổi là \(\left(\frac{1}{4}; -5\right)\)

Xét (d2)

\(y=(3m^2+1)x+(m^2-9)\)

\(\Leftrightarrow m^2(3x+1)+(x-y-9)=0\)

Để pt đúng với mọi m thì \(\left\{\begin{matrix} 3x+1=0\\ x-y-9=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-\frac{1}{3}\\ y=\frac{-28}{3}\end{matrix}\right.\)

Vậy điểm B cố định khi m thay đổi là \(\left(\frac{-1}{3}; \frac{-28}{3}\right)\)

Như vậy ta có đpcm.

\(BA=\sqrt{(-\frac{1}{3}-\frac{1}{4})^2+(\frac{-28}{3}+5)^2}=\frac{\sqrt{2753}}{12}\)

29 tháng 10 2023

Tọa độ giao điểm của (d2) và (d3) là nghiệm của hệ phương trình sau:

\(\left\{{}\begin{matrix}x+1=-x+3\\y=x+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x=2\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Thay x=1 và y=2 vào (d1), ta được:

\(\left(m^2-1\right)+m^2-5=2\)

=>\(2m^2=8\)

=>\(m^2=4\)

=>\(\left[{}\begin{matrix}m=2\\m=-2\end{matrix}\right.\)

31 tháng 10 2022

b: Để hai đường song song thì m^2-1=1 và -m^2+3=5

=>m^2=2 và -m^2=2

=>\(m=\pm\sqrt{2}\)

c: Vì (d2) vuông góc với (d3)

và (d1)//(d2)

nên (d1) vuông góc với (d3)

NV
7 tháng 11 2021

Tình cờ hay cố ý mà dữ liệu bài toán có rất nhiều sự trùng hợp dẫn đến lời giải rất dễ dàng:

\(M\in d_1\Rightarrow y_M=\left(m^2+1\right)x_M-2\Rightarrow y_M+2=\left(m^2+1\right)x_M\)

\(\Rightarrow A=2020\left(m^2+1\right)x_M^2\ge0\)

\(A_{min}=0\) khi \(m=0\)

Khi đó điểm M là \(M\left(0;-2\right)\)

7 tháng 11 2021

thầy ơi vậy d2 dùng làm gì ạ?

31 tháng 12 2021

b: Để hai đường thẳng cắt nhau tại một điểm trên trục tung thì m-1=15

hay m=16

20 tháng 11 2023

a: loading...

b: Tọa độ giao điểm của (d1) và (d2) là:

\(\left\{{}\begin{matrix}3x-2=x+1\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-x=2+1\\y=x+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x=3\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{3}{2}+1=\dfrac{5}{2}\end{matrix}\right.\)

Thay x=3/2 và y=5/2 vào (d3), ta được:

\(2m+3\cdot\dfrac{3}{2}-1=\dfrac{5}{2}\)

=>\(2m+\dfrac{7}{2}=\dfrac{5}{2}\)

=>\(2m=-1\)

=>m=-1/2

c: (d3): y=2m+3x-1

=>y=m*2+3x-1

Tọa độ điểm mà (d3) luôn đi qua là:

\(\left\{{}\begin{matrix}2=0\left(vôlý\right)\\y=3x-1\end{matrix}\right.\)

=>(d3) không đi qua cố định bất cứ điểm nào

NV
9 tháng 3 2020

Phương trình hoành độ giao điểm:

\(\left(m-1\right)x-m^2-2m=\left(m-2\right)x-m^2-m+1\)

\(\Leftrightarrow x=m+1\)

\(\Rightarrow y=\left(m-1\right)\left(m+1\right)-m^2-2m=-2m-1\)

\(\Rightarrow Q\left(m+1;-2m-1\right)\)

\(2x_Q+y_Q=2m+2-2m-1=1\) \(\forall m\)

\(\Leftrightarrow y_Q=-2x_Q+1\) \(\forall m\)

\(\Rightarrow Q\) luôn thuộc đường thẳng cố định \(y=-2x+1\)