K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x-2\right)\left(x+5\right)< 0\)

Xét các trường hợp:

Trường hợp 1:

\(\hept{\begin{cases}x-2< 0\\x+5>0\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x>-5\end{cases}\Rightarrow}-5< x< 2}\)

Trường hợp 2:

\(\hept{\begin{cases}x-2>0\\x+5< 0\end{cases}\Rightarrow\hept{\begin{cases}x>2\\x< -5\end{cases}}}\Rightarrow\varnothing\)

Vậy \(-5< x< 2\)thì\(\left(x-2\right)\left(x+5\right)< 0\)

\(\left(x+1\right)\left(x+3\right)< 0\)

Xét từng trường hợp :

Trường hợp 1:

\(\hept{\begin{cases}x+1>0\\x+3>0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x>-3\end{cases}\Rightarrow}x>-1}\)

Trường hợp 2:

\(\hept{\begin{cases}x+1< 0\\x+3< 0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x< -3\end{cases}\Rightarrow}x< -3}\)

Vậy......

Bài 2: 

a: \(=x^{n+19-14}=x^{n+5}\)

b: \(=x^{94-17-65}=x^{12}\)

16 tháng 7 2015

Thì các bạn hãy trả lời từng câu 1

23 tháng 1 2017

hơi nhiều nhỉ

23 tháng 1 2017

Sao bạn đăng nhiều thế !

hoa mắt thì làm sao giải cho bạn được

\(\left\{{}\begin{matrix}xy=0\\x+2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}0+2\cdot0=3\left(loại\right)\\xy=0\end{matrix}\right.\)

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

27 tháng 12 2016

Câu x ) là bằng - 5 nhé mấy bạn. Làm giúp mình tất cả nhé ! Mình cảm ơn nhiều lắm !

18 tháng 3 2020

sai đề rồi bạn ơi

9 tháng 6 2018

Bài 1 :

\(3x+5=2\left(x-\frac{1}{4}\right)\)

\(\Leftrightarrow3x+5=2x-\frac{1}{2}\)

\(\Leftrightarrow5+\frac{1}{2}=2x-3x\)

\(\Leftrightarrow\frac{11}{2}=-x\)

\(\Leftrightarrow\frac{-11}{2}=x\)

Vậy \(x=\frac{-11}{2}\)

Bài 2:

a, \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)

Vì \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|\ge0\\\left|y+\frac{2018}{2019}\right|\ge0\\\left|z-3\right|\ge0\end{cases}}\)

       Mà \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)

\(\Rightarrow+,\left|x+\frac{19}{5}\right|=0\)

\(\Leftrightarrow x+\frac{19}{5}=0\)

\(\Leftrightarrow x=\frac{-19}{5}\)

\(\Rightarrow+,\left|y+\frac{2018}{2019}\right|=0\)

\(\Leftrightarrow y+\frac{2018}{2019}=0\)

\(\Leftrightarrow y=\frac{-2018}{2019}\)

\(\Rightarrow+,\left|z-3\right|=0\)

\(\Leftrightarrow z-3=0\)

\(\Leftrightarrow z=3\)

Vậy \(\hept{\begin{cases}x=\frac{-19}{5}\\y=\frac{-2018}{2019}\\z=3\end{cases}}\)

b, Ta có : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)

Vì : \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y+4\right|\ge0\\\left|z-5\right|\ge0\end{cases}}\)

Mà : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)

\(\Rightarrow+,\left|x-\frac{1}{2}\right|\ge0\)

\(\Rightarrow x\inℚ\)

\(\Rightarrow+,\left|2y+4\right|\ge0\)

\(\Rightarrow y\inℚ\)

\(\Rightarrow+,\left|z-5\right|\ge0\)

\(\Rightarrow z\inℚ\)

Vậy chỉ cần \(\hept{\begin{cases}x\inℚ\\y\inℚ\\z\inℚ\end{cases}}\)thì thỏa mãn.

24 tháng 3 2020

234*(-26)+134*26

28 tháng 9 2021

\(a,\Leftrightarrow\left\{{}\begin{matrix}5x+15y=-10\\5x-4y=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}19y=-21\\5x-4y=11\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{21}{19}\\5x-4\left(-\dfrac{21}{19}\right)=11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{25}{19}\\y=-\dfrac{21}{19}\end{matrix}\right.\)

\(c,\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\10x-5y=-40\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=1\\13x=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\\ d,\Leftrightarrow\left\{{}\begin{matrix}5x-10y=-30\\5x-3y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x-3y=5\\-7y=-35\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=5\end{matrix}\right.\\ e,\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)+3\left(x-y\right)=4\\2\left(x+y\right)+4\left(x-y\right)=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=6\\2\left(x+y\right)+3\cdot6=4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=6\\x+y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{13}{2}\end{matrix}\right.\)