Rút gọn : \(B=\left|3x-1\right|+12x-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\dfrac{2y^4}{3x\left(2x-3y\right)}\\ b,=-\dfrac{2y\left(3x-1\right)^2}{3x^2}\\ c,=\dfrac{5\left(4x^2-9\right)}{\left(2x+3\right)^2}=\dfrac{5\left(2x-3\right)\left(2x+3\right)}{\left(2x+3\right)^2}=\dfrac{5\left(2x-3\right)}{2x+3}\\ d,=\dfrac{5x\left(x-2y\right)}{-2\left(x-2y\right)^3}=-\dfrac{5x}{2\left(x-2y\right)^2}\)
`(\sqrt(3x^2-12x+12)-x+2)/(x-2)`
`=(\sqrt(3(x^2-4x+4))-(x-2))/(x-2)`
`=(\sqrt(3(x-2)^2)) -(x-2))/(x-2)`
`=(\sqrt3. (x-2) - (x-2))/(x-2)`
`=( (\sqrt3-1) (x-2))/(x-2)`
`=\sqrt3-1`
`=>` C.
\(P=4\left(\frac{3}{4}x-1\right)+\left(12x^2-3x\right):\left(-3x\right)-\left(2x+1\right)\)
\(=4.\frac{3}{4}x-4.1+12x^2:\left(-3x\right)+\left(-3x\right):\left(-3x\right)-2x-1\)
\(=3x-4-4x+1-2x-1=-3x-4\)
Thay \(x=\frac{-4}{3}\)vào P ta được \(P=-3.\frac{-4}{3}-4=4-4=0\)
a: \(A=\left(\dfrac{2\left(2x+1\right)}{2\left(2x+4\right)}-\dfrac{x}{3x-6}-\dfrac{2x^3}{3x^3-12x}\right):\dfrac{6x+13x^2}{24x-12x^2}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^3}{3x\left(x^2-4\right)}\right):\dfrac{x\left(13x+6\right)}{x\left(24-12x\right)}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^2}{3\left(x-2\right)\left(x+2\right)}\right):\dfrac{13x+6}{-12\left(x-2\right)}\)
\(=\dfrac{3\left(2x+1\right)\left(x-2\right)-2x\left(x+2\right)-4x^2}{6\left(x+2\right)\left(x-2\right)}\cdot\dfrac{-12\left(x-2\right)}{13x+6}\)
\(=\dfrac{3\left(2x^2-3x-2\right)-2x^2-4x-4x^2}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{6x^2-9x-6-6x^2-4x}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{-\left(13x+6\right)\cdot\left(-2\right)}{\left(13x+6\right)\left(x-2\right)}=\dfrac{2}{x-2}\)
b: Để A>0 thì x-2>0
hay x>2
Để A>-1 thì A+1>0
\(\Leftrightarrow\dfrac{2+x-2}{x-2}>0\)
=>x/x-2>0
=>x>2 hoặc x<0
\(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
\(=\left[\left(3x+1\right)-\left(3x+5\right)\right]^2\)
\(=\left(3x+1-3x-5\right)^2\)
\(=\left(-4\right)^2=16\)
a: Ta có: \(A=\left(2x+y\right)^2-\left(2x-y\right)^2\)
\(=\left(2x+y-2x+y\right)\left(2x+y+2x-y\right)\)
\(=4x\cdot2y=8xy\)
b: Ta có: \(B=\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(2y-1\right)^2\)
\(=\left(3x+2+1-2y\right)^2\)
\(=\left(3x-2y+3\right)^2\)
Câu A) là \(\left(2x+y\right)^2-\left(y-2x\right)^2\)
Chứ ko phải là\(\left(2x+y\right)^2-\left(2x-y\right)^2\)
Nhưng dù sao thì cũng cảm ơn
Ta có : \(\left|3x-1\right|=3x-1\) với \(3x-1\ge0\Leftrightarrow3x\ge1\Leftrightarrow x\ge\frac{1}{3}\)
\(\left|3x-1\right|=-3x+1\)với \(3x-1< 0\Leftrightarrow3x< 1\Leftrightarrow x< \frac{1}{3}\)
Suy ra : Với : \(x\ge\frac{1}{3}\)thì \(B=3x-1+12x-1=15x-2\)
Với : \(x< \frac{1}{3}\)thì \(B=-3x+1+12x-1=9x\)
\(+,x\ge\frac{1}{3}\Rightarrow B=|3x-1|+12x-1=3x-1+12x-1=15x-2\)
\(+,x< \frac{1}{3}\Rightarrow B=|3x-1|+12x-1=1-3x+12x-1=9x\)