K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2021

a) Ta có: AM là đường trung tuyến (gt). => M là trung điểm của BC.

Xét tam giác ABC vuông tại A: AM là đường trung tuyến (gt).

=> AM = \(\dfrac{1}{2}\) BC (Tính chất đường trung tuyến trong tam giác vuông).

=> AM = MB = MC = \(\dfrac{1}{2}\) BC (do M là trung điểm của BC).

Xét tam giác AMB có: AM = MB (cmt). => Tam giác AMB cân tại M.

Mà MD là đường cao (MD \(\perp\) AB).

=> MD là phân giác ^AMB (Tính chất các đường trong tam giác cân).

Xét tam giác AMC có: AM = MC (cmt). => Tam giác AMC cân tại M.

Mà ME là đường cao (ME \(\perp\) AC).

=> ME là phân giác ^AMC (Tính chất các đường trong tam giác cân).

Xét tam giác MBD và tam giác MAD có:

+ MD chung.

+ MB = AM (cmt).

+ ^BMD = ^AMD (MD là phân giác ^AMB).

=> Tam giác MBD = Tam giác MAD (c - g - c).

=> ^MBD = ^MAD (2 góc tương ứng). 

=> ^MBD = ^MAD = \(90^o\). => BD \(\perp\) AB. (1)

Xét tam giác MAE và tam giác MCE có:

+ ME chung.

+ MC = AM (cmt).

+ ^AME = ^CME (ME là phân giác ^AMC).

=> Tam giác MAE = Tam giác MCE (c - g - c).

=> ^MAE = ^MCE (2 góc tương ứng). 

=> ^MAE = ^MCE = \(90^o\). => CE \(\perp\) AB. (2)

Từ (1); (2) => BD // CE (Từ \(\perp\) đến //).

b) Ta có: DE = DA + AE.

Mà DA = DB (Tam giác MBD = Tam giác MAD).

      EA = EC (Tam giác MAE = Tam giác MCE).

=> DE = BD + CE (đpcm).

 
9 tháng 8 2015

a. BD song2 vứi CE vì cùng vuông góc vs BC                                                                                                                                                              b. gị MD cắt AB tại F, ME cắt AC tại  K.                                                                                                                                                                           tam giác abm có BM = AM, MF vuông góc vs AB \(\Rightarrow\) BF = FA                                                                                                                     tam giác DAb có AF=FB, DF vuông góc vs AB \(\Rightarrow\) tam giac DAB cân ở D nên DB=DA                                                                                          tương tự cm AE=EC là ok

1 tháng 4 2018

a. BD song2 vứi CE vì cùng vuông góc vs BC                                                                                                                                                              b. gị MD cắt AB tại F, ME cắt A C tại  K.                                                                                                                                                                           tam giác abm có BM = AM, MF vuông góc vs AB  ⇒ BF = FA                                                                                                                     tam giác DAb có AF=FB, DF vuông góc vs AB ⇒ tam giac DAB cân ở D nên DB=DA                                                                                          tương tự cm AE=EC là ok

18 tháng 2 2020

C A B M D E d

a) Ta có : CE ⊥ d

                BD ⊥ d

\(\Rightarrow\)CE // BD  (ĐPCM)

b) Xét △CEA và △ADB có :

    AC = AB

   \(\widehat{EAC}=\widehat{ABD}\)(cùng phụ với \(\widehat{DAB}\))

\(\Rightarrow\) △CEA = △ADB (cạnh huyền-góc nhọn)

c) Có △CEA = △ADB

\(\Rightarrow\hept{\begin{cases}BD=AE\\CE=AD\end{cases}}\)(Cặp cạnh tương ứng)

\(\Rightarrow\)BD + CE = AE + AD = DE (ĐPCM)

d)  △ABC vuông tại A có AM là trung tuyến

\(\Rightarrow\)AM = BM = CM

\(\Rightarrow\)△ABM cân tại M

Có : \(\widehat{ECA}=\widehat{BAD}\)(△CEA = △ADB)

       \(\widehat{ACB}=\widehat{ABC}\) (△ABC cân tại A)

\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{ABC}\)

Mà \(\widehat{ABC}=\widehat{MAB}\)(△MAC cân tại M)

\(\Rightarrow\widehat{ECA}+\widehat{ACB}=\widehat{BAD}+\widehat{MAB}\)

\(\Rightarrow\widehat{ECM}=\widehat{MAD}\)

Xét △ADM và △CEM có :

       EC = AD

       \(\widehat{ECM}=\widehat{MAD}\)

       AM = CM

\(\Rightarrow\)△ADM = △CEM (c-g-c)   (ĐPCM)

\(\Rightarrow\)EM = MD   (Cặp cạnh tương ứng) (1)

Có : \(\widehat{EMA}+\widehat{EMC}=90^o\)

       \(\widehat{EMC}=\widehat{DMA}\)(△ADM = △CEM)

\(\Rightarrow\widehat{EMA}+\widehat{DMA}=90^o\)

\(\Rightarrow\widehat{EMD}=90^o\)(2)

Từ (1) và (2) suy ra △DME vuông cân tại M.

mình không biết

a: BD=4cm

b: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra:BD=CE

c: Xét ΔABC có 

BD là đường cao

CE là đường cao

BD cắt CE tại I

Do đó: I là trực tâm của ΔABC

Suy ra: AI\(\perp\)BC

=>AH vuông góc với BC tại H

mà ΔACB cân tại A

nên AH vuông góc với BC tại trung điểm của BC

6 tháng 3 2022

Xin lỗi nhưng em mới đến phần ôn tập tam giác là cùng ạ