K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

a)do 183 chia hết cho 3 nhưng ko chia hết cho 9

mà 9b chia hết cho 9

=>3a=3=>a=1

9b=180=>b=20

a=1,b=20

NV
3 tháng 8 2021

a.

Với \(a=0\Rightarrow1+124=5^b\Rightarrow b=3\)

Với \(a>0\Rightarrow2^a\) luôn chẵn \(\Rightarrow2^a+124\) luôn chẵn

Mà \(5^b\) luôn lẻ \(\Rightarrow\) không tồn tại \(a>0\) thỏa mãn

Vậy \(\left(a;b\right)=\left(0;3\right)\)

b.

\(3^a\) và \(9^b\) đều luôn lẻ \(\Rightarrow3^a+9^b\) luôn chẵn

Mà 183 lẻ \(\Rightarrow\) không tồn tại a; b thỏa mãn

c.

\(a=0\Rightarrow1+80=3^b\Rightarrow b=4\)

Với \(a>0\Rightarrow2^a\) chẵn \(\Rightarrow2^a+80\) chẵn

Mà \(3^b\) luôn lẻ \(\Rightarrow\) ko tồn tại \(a>0\) thỏa mãn

Vậy \(\left(a;b\right)=\left(0;4\right)\)

22 tháng 1 2021

Ta thấy 225 là số lẻ nên 100a + 3b + 1 và 2a + 10a + b cũng là các số lẻ.

Do 100a + 3b + 1 là số lẻ mà 100a là số chẵn nên 3b là số chẵn tức b là só chẵn.

Kết hợp với 2a + 10a + b là số lẻ ta có 2a là số lẻ

\(\Leftrightarrow2^a=1\Leftrightarrow a=0\).

Khi đó: \(\left(3b+1\right)\left(b+1\right)=225\)

\(\Leftrightarrow\left(b-8\right)\left(3b+28\right)=0\Leftrightarrow b=8\) (Do b là số tự nhiên).

Vậy a = 0; b = 8.

 

3 tháng 8 2023

Để chứng minh rằng √(a-b) và √(3a+3b+1) là các số chính phương, ta sẽ điều chỉnh phương trình ban đầu để tìm mối liên hệ giữa các biểu thức này. Phương trình ban đầu: 2^(2+a) = 3^(2+b) Ta có thể viết lại phương trình theo dạng: (2^2)^((1/2)+a/2) = (3^2)^((1/2)+b/2) Simplifying the exponents, we get: 4^(1/2)*4^(a/2) = 9^(1/2)*9^(b/2) Taking square roots of both sides, we have: √4*√(4^a) = √9*√(9^b) Simplifying further, we obtain: 22*(√(4^a)) = 32*(√(9^b)) Since (√x)^y is equal to x^(y/), we can rewrite the equation as follows: 22*(4^a)/ = 32*(9^b)/ Now let's examine the expressions inside the square roots: √(a-b) can be written as (√((22*(4^a))/ - (32*(9^b))/)) Similarly, √(3*a + 3*b + ) can be written as (√((22*(4^a))/ + (32*(9^b))/)) We can see that both expressions are in the form of a difference and sum of two squares. Therefore, it follows that both √(a-b) and √(3*a + 3*b + ) are perfect squares.

1: C=4a+2a+10b-b

=6a+9b

=3(2a+3b)

=3*12=36

D=21a+9b-6a-4b

=15a+5b

=5(3a+b)

=5*18=90

B=5a+7a-4b-8b

=12a-12b

=12(a-b)

=12*8=96

4:

Gọi hai số cần tìm là a,b

Theo đề, ta có hệ phương trình:

a+b=38570 và a=3b+922

=>a=29158 và b=9412

4 tháng 8 2023

bài 4 "hệ phương trình là "gì vậy ạ

1: C=4a+2a+10b-b

=6a+9b

=3(2a+3b)

=3*12=36

D=21a+9b-6a-4b

=15a+5b

=5(3a+b)

=5*18=90

B=5a+7a-4b-8b

=12a-12b

=12(a-b)

=12*8=96

1 tháng 2 2016

\(2a=3b\Rightarrow\frac{a}{3}=\frac{b}{2}\left(1\right)\)

\(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\left(2\right)\)

Từ (1) và (2) => \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

=> \(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)

Theo t/c dãy tsbn:

\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=-\frac{30}{15}=-2\)

=> a/21 = -2 => a = -42

=> b/14 = -2 => b = -28

=> c/10 = -2 => c = -20

Vậy a + b + c =-42 - 28 - 20 = -90.

1 tháng 2 2016

Khi do a+b+c=-90

18 tháng 1 2019

a) +) Vì 183 \(⋮̸\) 9 và 9b \(⋮\) 9 nên 3a \(⋮̸\) 9

\(\Rightarrow\) a < 2

\(\Rightarrow\) a \(\in\) {0; 1} (1)

+) Vì 183 \(⋮\) 3 và 9b \(⋮\) 3 nên 3a \(⋮\) 3 (2)

Từ (1) và (2) suy ra a = 1 \(\Rightarrow\) b = 20

Vậy...

27 tháng 1 2019

Có 3a\(\le\)183(a là STN)nên 0\(\le\)a\(\le\)4

Nếu a=0 thì b loại

a=1 thì b=20

a=2 thì b loại

a= 3 thì b loại

a=4 thì b loại

Vậy a=1;b=20