Cho hcn ABCD kẻ CM và AN cùng vuông góc với BD
a) Cmr BN=DM
b) Cmr tức giác AMCN là hình bình hành
c)Qua B kẻ Bx vuông góc với BD. Gọi I là trung điểm BC. MI cắt Bx tại K. Tứ giác BMCK là hình gì?
d) HCN ABCD có thêm đk gì để BMCK là hình vg?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BDCE có
BD//CE
BE//CD
Do đó: BDCE là hình bình hành
b: Ta có: BDCE là hình bình hành
nên BC cắt DE tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của DE
d: Xét tứ giác ABDC có
\(\widehat{ABD}+\widehat{ACD}=180^0\)
Do đó: ABDC là tứ giác nội tiếp
Suy ra: \(\widehat{A}+\widehat{D}=180^0\)
a: Xét tứ giác BHCD có
BH//CD
CH//BD
DO đó: BHCD là hình bình hành
Câu b và c sai đề rồi bạn
a: Xét ΔADN vuông tại N và ΔCBM vuông tại M có
AD=CB
góc ADN=góc CBM
=>ΔADN=ΔCBM
=>DN=BM và AN=CM
b: Xét tứ giác ANCM có
AN//CM
AN=CM
=>ANCM là hình bình hành
c: gọi O là giao của AC và BD
=>O là trung điểm chung của AC và BD
Xét ΔAKC có AO/AC=AN/AK
nên ON//KC
=>BD//KC
Xét ΔBAK có
BN vừa là đường cao, vừa là trung tuyến
=>ΔBAK cân tại B
=>BA=BK=DC
Xét tứ giác DBCK có
CK//BD
DC=BK
=>DBCK là hình bình hành