K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

) Ta có: 

 

- AM là đường phân giác góc ABC nên ∠MAB = ∠MAC.

 

- MH vuông góc với BC nên ∠HMB = 90°.

 

- ∠BMA = ∠B + ∠MAB = ∠B + ∠MAC.

 

 

 

Vì ∠BMA = ∠HMB và ∠HBM = ∠BMA, nên tam giác ABM = tam giác HBM theo gốc.

 

 

 

b) Ta có:

 

- AM là đường phân giác của góc ABC nên ∠BAM = ∠MAC.

 

- MH vuông góc với BC nên ∠HMB = 90°.

 

- Ta có ∠HMA = ∠HMB + ∠BAM = 90° + ∠MAC.

 

 

 

Vì ∠HMA = 90° + ∠MAC và ∠AHM = 180° - ∠HMA, nên 180° - ∠AHM = 90° + ∠MAC. Do đó, ∠AHM = ∠MAC.

 

 

Vậy AK // HM.

 

 

 

c) Ta có:

 

- AK // HM (theo b).

 

- AM là đường phân giác của góc ABC nên ∠BAM = ∠MAC.

 

- HN là đường cao của tam giác ABM, nên ∠BNH = 90°.

 

- Ta có ∠ANH = ∠ANM + ∠MNH = ∠BAM + ∠BNH = ∠BAM + 90°.

 

 

 

Vì ∠ANH = ∠BAM + 90° và ∠HAN = 180° - ∠ANH, nên 180° - ∠HAN = ∠BAM + 90°. Do đó, ∠HAN = ∠BAM.

 

 

 

Vậy HN // AM.

2 tháng 9 2020

A B C M E c

Gọi Cc là tia phân giác ngoài đỉnh C

Trên tia đổi của CB lấy điểm E sao cho AC = EC

=> \(\Delta ACE\)cân tại C 

Mà Cc là tia phân giác của góc \(\widehat{ACE}\)

=> Cc vừa là Tia phân giác vừa là đường trung trực của AE

=> MA = ME ( tc)

Ta có \(AC+CB\Leftrightarrow EC+CB\left(AC=EC\right)=BE\left(1\right)\)

         \(AM+BM\Leftrightarrow ME+BM\left(2\right)\)

Xét tam giác BME có 

\(BE< ME+BM\left(dl\right)\left(3\right)\)

Từ (1); (2) và (3)

\(\Rightarrow AC+BC< AM+BM\left(đpcm\right)\)

Ta có tam giác EDA vuông tại A (phân giác trong và ngoài vuông góc với nhau) 

Từ B vẽ đường vuông góc BC cắt AD tại M (AD phân giác trong của góc A) --> góc ABM = góc B - 90 độ --> góc ABM = góc C .

 dụng góc ngoài của tg ADC --> góc MDB = góc C + góc MAC 

áp dụng góc ngoài tam giác AMB

=> góc BMD = góc MAB + ABM mà góc MAB = MAC (phân giác góc A) và góc ABM = C --> góc BMD = góc MDB --> tg MDB

vuông cân --> góc MDB = 45 độ --> tg EAD vuông cân

t i c k nhé!!!! 6767897854653164457575675676768797897897845665765

24 tháng 4 2019

Ta có tam giác EDA vuông tại A (phân giác trong và ngoài vuông góc với nhau) 

Từ B vẽ đường vuông góc BC cắt AD tại M (AD phân giác trong của góc A) --> góc ABM = góc B - 90 độ --> góc ABM = góc C .

 dụng góc ngoài của tg ADC --> góc MDB = góc C + góc MAC 

áp dụng góc ngoài tam giác AMB

=> góc BMD = góc MAB + ABM mà góc MAB = MAC (phân giác góc A) và góc ABM = C --> góc BMD = góc MDB --> tg MDB

vuông cân --> góc MDB = 45 độ --> tg EAD vuông cân

Chúc bạn học tốt

14 tháng 5 2016

a) Vì tam giác ABC là tam giác cân nên tia phân giác của góc B cũng là đường cao của tam giác ABC => góc BMC = góc BMA

Xét tam giác BMA và tam giác BMC, ta có:

Góc BMA = góc BMC ( cmt )

AB = CB ( gt )

Góc ABM = Góc CBM ( gt )

Vậy tam giác BMA = tam giác BMC ( cạnh huyền góc nhọn )

b) Theo câu a đã chứng minh, tia phân giác của góc B cũng là đường cao của tam giác ABC. Vậy góc BMC = góc BMA

c) Câu này chắc AB = 8cm mà bạn ghi nhầm AC = 8cm

Áp dụng đính lý Pi - ta - go vào tam giác ABM, ta có:

AM2 + BM2 = AB2

52 + BM2 = 82

BM2 = 82 - 52

BM2 = 39

BM gần = 6

14 tháng 5 2016

a) Do tam giác ABC cân tại B và BM là đường phân giác của góc B nên

BM là đường cao,đường trung tuyến,và đường trung trực của,đường cao của tam giác ABC(tính chất tam giác cân)

Xét tam giác BMA và tam giác BMC có

BA=BC(vì tam giác ABC cân tại B)

Góc BMA=góc BMC=90 độ(vì BM là đường cao của tam giác ABC)

Cạnh chung BM

Suy ra tam giác BMA= tam giác BMC(cạnh huyền-cạnh góc vuông)

b) Vì BM là đường cao của tam giác ABC nên

Góc BMA=BMC=90 độ

c) Do BM là đường trung trực của tam giác ABC nên(cmt ở câu a)

Nên AM=CM=8:2=4 CM

Áp dụng định lí Py-ta-go vào tam giác vuông ABM có

AB^2=AM^2+BM^2

Hay 5^2+BM^2=8^2

25+BM^2=64

BM^2=64-25=39

BM= căn bậc hai của 39=xấp xỉ 6

Vậy BM=~6