K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2019

đúng máy tính mà tính

hok tốt nhé

tk tuii nhé

\(1+1=2\)

\(2.3=6\)

\(8.72:9=576:9=64\)

\(\frac{1234+4321}{4.7+5}=\frac{5555}{28+5}=\frac{5555}{33}=\frac{505.11}{3.11}=\frac{505}{3}\)

\(4,5.5+3,2.\frac{2}{1}=22,5+6,4=28,9\)

7 tháng 6 2016

a) \(\frac{1}{n}-\frac{1}{n+a}=\frac{\left(n+a\right)-n}{n\left(n+a\right)}=\frac{a}{a\left(n+a\right)}\) (đpcm)

b) \(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

\(B=\frac{5}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{5}{3}.\left(1-\frac{1}{103}\right)=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)

\(C=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}=\frac{1}{3}-\frac{1}{51}=\frac{16}{51}\)

a: \(=\left(-\dfrac{25}{140}+\dfrac{245}{140}+\dfrac{32}{140}\right)\cdot\dfrac{-69}{20}\)

\(=\dfrac{252}{140}\cdot\dfrac{-69}{20}\)

\(=\dfrac{9}{5}\cdot\dfrac{-69}{20}=\dfrac{-621}{100}\)

b: \(=\left(6-2-\dfrac{4}{5}\right)\cdot\dfrac{25}{8}-\dfrac{8}{5}\cdot4\)

\(=\dfrac{16}{5}\cdot\dfrac{25}{8}-\dfrac{32}{5}=\dfrac{18}{5}\)

c: \(=\left(\dfrac{2}{24}+\dfrac{18}{24}+\dfrac{14}{24}\right):\dfrac{-17}{8}\)

\(=\dfrac{34}{24}\cdot\dfrac{-8}{17}=\dfrac{-1}{3}\cdot2=-\dfrac{2}{3}\)

14 tháng 7 2015

a)=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)

\(=1-\frac{1}{2009}\)

\(=\frac{2008}{2009}\)

b) =\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{94}-\frac{1}{97}\)

\(=1-\frac{1}{97}\)

=\(\frac{96}{97}\)

14 tháng 7 2015

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2008.2009}\) \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2008}-\frac{1}{2009}\)  

= 1 - 1/2009 

= 2008/2009

b) 3/1.4 + 3/4.7 + 3/7.10 + .... + 3/94.97

= 1-  1/4 + 1/4 - 1/7 + 1/7 - 1/10 + .... + 1/94 - 1/97

= 1 - 1/97

= 96/97

24 tháng 3 2019

a, \(\frac{9}{1.2}+\frac{9}{2.3}+...+\frac{9}{99.100}\)

=9.(\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\))

= 9(1 -\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\))

=9(1-\(\frac{1}{100}\))

A=\(\frac{891}{100}\)

b, \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{27.30}\)

=1-(\(\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{27}-\frac{1}{30}\))

=1-\(\frac{1}{30}\)

B=\(\frac{29}{30}\)

24 tháng 3 2019

a) \(\dfrac{9}{1.2}+\dfrac{9}{2.3}+...+\dfrac{9}{99.100}\)

\(=9\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)

\(=9\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=9\left(1-\dfrac{1}{100}\right)\)

\(=9.\dfrac{99}{100}\)

\(=\dfrac{891}{100}\)

b) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{27.30}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{27}-\dfrac{1}{30}\)

\(=1-\dfrac{1}{30}\)

\(=\dfrac{29}{30}\)

10 tháng 1 2018

lick nhật linh là gif

9 tháng 11 2018

a) \(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)

\(=\frac{5.2^{30}.3^{18}-2^2.2^{27}.3^{20}}{5.2^9.2^{19}.3^{19}-7.2^{29}.3^{18}}\)

\(=\frac{2^{29}.3^{18}\left(5.2-3^2\right)}{2^{18}.3^{18}\left(5.3-7.2\right)}\)

\(=\frac{2.1}{1}=2\)

24 tháng 7 2016

a/ (-3,2).\(\frac{-15}{64}\)+(0,8-2\(\frac{4}{5}\)):1\(\frac{23}{24}\)

=(\(\frac{-16}{5}\)).\(\frac{-15}{64}\)+(\(\frac{4}{5}\)-\(\frac{14}{5}\)):\(\frac{47}{24}\)

=(\(\frac{-16}{5}\)).\(\frac{-15}{64}\)+(-2):\(\frac{47}{24}\)

\(\frac{3}{4}\)+\(\frac{-48}{47}\)

=\(\frac{-51}{188}\)

 

25 tháng 7 2016

b/ 1\(\frac{13}{15}\).3.(0,5)\(^2\).3+(\(\frac{8}{15}\)-1\(\frac{19}{60}\)):1\(\frac{23}{24}\)

\(\frac{28}{15}\).3.\(\frac{1}{4}\).3+(\(\frac{8}{15}\)-\(\frac{79}{60}\)):\(\frac{47}{24}\)

\(\frac{28}{15}\).3.\(\frac{1}{4}\).3+(\(\frac{-47}{60}\)):\(\frac{47}{24}\)

\(\frac{28}{5}\).\(\frac{1}{4}\).3+(\(\frac{-47}{60}\)):\(\frac{47}{24}\)

\(\frac{7}{5}\).3+(\(\frac{-47}{60}\)):\(\frac{47}{24}\)

\(\frac{21}{5}\)+(\(\frac{-47}{60}\)):\(\frac{47}{24}\)

\(\frac{21}{5}\)+(\(\frac{-2}{5}\))

\(\frac{19}{5}\)

mk làm hơi dài dòng chút 

CHÚC BẠN HỌC TỐT

20 tháng 7 2019

Bài 2 

| x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= | ( -3,2) + \(\frac{2}{5}\)|

=> | x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= | -2,8|

=> | x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= -2,8

=> | x - \(\frac{1}{3}\)| = -2,8 - \(\frac{4}{5}\)

=> | x - \(\frac{1}{3}\)| = - 3,6

=> x - \(\frac{1}{3}\)= -3,6

=> x = -3,6 + \(\frac{1}{3}\)

=> x = \(\frac{-49}{15}\)

21 tháng 7 2019

Bài 3 :

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}\)

\(=\frac{\left[a_1+a_2+...+a_9\right]-\left[1+2+...+9\right]}{9+8+...+1}=\frac{90-45}{45}=1\)

Ta có : \(\frac{a_1-1}{9}=1\Rightarrow a_1=10\)

Tương tự : \(a_1=a_2=....=a_9=10\)

19 tháng 7 2019

a) 1/1.2 + 1/2.3 + ... + 1/2019.2020

= 1 - 1/2 + 1/2 - 1/3 + ... + 1/2019 - 1/2020

= 1 - 1/2020

= 2019/2020

b) 1/1.4 + 1/4.7 + ... + 1/100.103

= 1/3.(1 - 1/4 + 1/4 - 1/7 + ... + 1/100 - 1/103)

= 1/3.(1 - 1/103)

= 1/3.102/103

= 34/103

\(a,\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{2019.2020}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2019}-\frac{1}{2020}\)

\(=1-\frac{1}{2020}=\frac{2019}{2020}\)

\(b,\frac{1}{1.4}+\frac{1}{4.7}+....+\frac{1}{100.103}\)

\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{1}{4.7}+....+\frac{1}{100.103}\right)\)

\(=\frac{1}{3}.\left(1-\frac{1}{103}\right)=\frac{1}{3}.\frac{102}{103}=\frac{34}{103}\)