Tìm giá trị của m để phương trình m \(\frac{m}{x-1}+\frac{5x}{x+1}=5\)(ẩn x) có nghiệm lớn hơn hoặc bằng 3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{200^2}+\frac{1}{200^2}+...+\frac{1}{200^2}\left(100\text{số hạng}\right)\)
\(\Leftrightarrow\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{100}{200^2}< \frac{100}{200}=\frac{1}{2}\)
\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+....+\frac{1}{200^2}< \frac{1}{2}\left(đpcm\right)\)
bài tớ sai rồi -_-' chưa lại hộ
\(=\frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)< \frac{1}{2^2}.\left(\frac{1}{1}+\frac{1}{1.2}+...+\frac{1}{99.100}\right)\)
\(=\frac{1}{2^2}.\left(1+1-\frac{1}{100}\right)=\frac{1}{4}.2-\frac{1}{400}=\frac{1}{2}-\frac{1}{400}< \frac{1}{2}\)
2.giải phương trình trên , ta được :
\(x_1=\frac{-m+\sqrt{m^2+4}}{2};x_2=\frac{-m-\sqrt{m^2+4}}{2}\)
Ta thấy x1 > x2 nên cần tìm m để x1 \(\ge\)2
Ta có : \(\frac{-m+\sqrt{m^2+4}}{2}\ge2\) \(\Leftrightarrow\sqrt{m^2+4}\ge m+4\)( 1 )
Nếu \(m\le-4\)thì ( 1 ) có VT > 0, VP < 0 nên ( 1 ) đúng
Nếu m > -4 thì ( 1 ) \(\Leftrightarrow m^2+4\ge m^2+8m+16\Leftrightarrow m\le\frac{-3}{2}\)
Ta được : \(-4< m\le\frac{-3}{2}\)
Tóm lại, giá trị phải tìm của m là \(m\le\frac{-3}{2}\)
1, 2mx−1x−1=m−2 (x≠1)(x≠1)
⇔ 2mx−1=(m−2)(x−1)
⇔ 2mx−1=x(m−2)−m+2
⇔ x.(m+2)=−m+3x.(m+2)=−m+3
Nếu m+2=0m+2=0 hay m=−2m=−2 thì 0x=5
⇒ PT vô nghiệm
Nếu m+2≠0 hay m≠−2 thì x=3mm+2
2, 2x2x²−5x+3+9x2x²−x−3=6
⇔ 2x(3x−2).(x−1)+9x(3x−2).(x+1)=6
⇔ 2x(x+1)(3x−2).(x−1)(x+1)+9x(x−1)(3x−2).(x+1)(x−1)=6
⇒ 2x(x+1)+9x(x−1)=6(3x−2)(x+1)(x−1)
⇔ 11x²−7x=18x³−12x²−18x+12
⇔ 18x³−13x²−11x+12=0