K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2019

Áp dụng bất đẳng thức Cô-si và Bunhiacopxki cho ba số không âm a,b,c, ta có:

- \(a^2+b^2+c^2\le\dfrac{\left(a+b+c\right)^2}{3}\)

- \(abc\le\dfrac{\left(a+b+c\right)^3}{27}\)

\(\Rightarrow P\ge\dfrac{1}{\dfrac{\left(a+b+c\right)^2}{3}}+\dfrac{1}{\dfrac{\left(a+b+c\right)^3}{27}}=3+27=30\)

Vậy GTNN của P = 30 khi a = b = c = 1/3

20 tháng 1 2019

\(abc\le\dfrac{1}{9}\left(ab+bc+ca\right)\left(a+b+c\right)=\dfrac{ab+bc+ca}{9}\)

\(ab+bc+ca\le\dfrac{1}{3}\left(a+b+c\right)^2=\dfrac{1}{3}\)

\(VT\ge\dfrac{1}{a^2+b^2+c^2}+\dfrac{9}{ab+bc+ca}=\dfrac{1}{a^2+b^2+c^2}+\dfrac{4}{2\left(ab+bc+ca\right)}+\dfrac{7}{ab+bc+ca}\)

\(\ge\dfrac{\left(1+2\right)^2}{\left(a+b+c\right)^2}+\dfrac{7}{\dfrac{1}{3}}=9+21=30\)

NV
30 tháng 12 2020

Đây là bài IMO 2001 và không cần điều kiện \(a+b+c=1\)

Áp dụng Holder:

\(P.P.\left[a\left(a^2+8bc\right)+b\left(b^2+8ac\right)+c\left(c^2+8ab\right)\right]\ge\left(a+b+c\right)^3\)

\(\Leftrightarrow P^2\ge\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+24abc}=\dfrac{a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)}{a^3+b^3+c^3+24abc}\)

\(\Rightarrow P^2\ge\dfrac{a^3+b^3+c^3+3.2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}}{a^3+b^3+c^3+24abc}=1\)

\(\Rightarrow P\ge1\)

NV
9 tháng 3 2021

\(\dfrac{1}{1+a}=1-\dfrac{1}{1+b}+1-\dfrac{1}{1+c}=\dfrac{b}{1+b}+\dfrac{c}{1+c}\ge2\sqrt{\dfrac{bc}{\left(1+b\right)\left(1+c\right)}}\)

Tương tự:

\(\dfrac{1}{1+b}\ge2\sqrt{\dfrac{ac}{\left(1+a\right)\left(1+c\right)}}\) ; \(\dfrac{1}{1+c}\ge2\sqrt{\dfrac{ab}{\left(1+a\right)\left(1+c\right)}}\)

Nhân vế với vế:

\(\dfrac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\dfrac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Rightarrow abc\le\dfrac{1}{8}\)

\(N_{max}=\dfrac{1}{8}\) khi \(a=b=c=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
4 tháng 2 2021

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(T=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{c}+\frac{1}{a}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\geq \frac{(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2}{2(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})}=\frac{1}{2}(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\)

\(\geq \frac{1}{2}.3\sqrt[3]{\frac{1}{abc}}=\frac{3}{2}\) (theo BĐT AM-GM)

Vậy $T_{\min}=\frac{3}{2}$.

Giá trị này đạt tại $a=b=c=1$

NV
20 tháng 12 2020

Chắc là bạn ghi nhầm mẫu số cuối cùng

\(\dfrac{1+b}{1+4a^2}=1+b-\dfrac{4a^2\left(1+b\right)}{1+4a^2}\ge1+b-\dfrac{4a^2\left(1+b\right)}{4a}=1+b-a\left(1+b\right)\)

Tương tự: \(\dfrac{1+c}{1+4b^2}\ge1+c-b\left(1+c\right)\) ; \(\dfrac{1+a}{1+4c^2}\ge1+a-c\left(1+a\right)\)

Cộng vế với vế:

\(P\ge3+a+b+c-\left(a+b+c\right)-\left(ab+bc+ca\right)\)

\(P\ge3-\left(ab+bc+ca\right)\ge3-\dfrac{1}{3}\left(a+b+c\right)^2=\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 1: Ta có:

\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)

\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)

$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$

AH
Akai Haruma
Giáo viên
22 tháng 1 2022

Bài 2:

Vì $a,b,c,d\in [0;1]$ nên

\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)

Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$

Tương tự:

$c+d\leq cd+1$

$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$

Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$

$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$

$=3-\frac{2abcd}{abcd+1}\leq 3$

Vậy $N_{\max}=3$

9 tháng 1 2021

Áp dụng bất đẳng thức AM - GM ta có:

\(\dfrac{\sqrt{a^2+b^2+c^2}}{8}+\dfrac{\sqrt{a^2+b^2+c^2}}{8}+\dfrac{1}{a^2+b^2+c^2}\ge\dfrac{3}{4}\). (1)

Đặt \(\sqrt{a^2+b^2+c^2}=t\Rightarrow\sqrt{\dfrac{4}{3}}\le t\le2\).

\(\dfrac{3\sqrt{a^2+b^2+c^2}}{4}+\dfrac{ab+bc+ca}{2}=\dfrac{3t}{4}+\dfrac{4-2t^2}{4}=\dfrac{\left(2-t\right)\left(2t+1\right)}{4}+\dfrac{3}{2}\ge\dfrac{3}{2}\). (2)

Cộng vế với vế của (1), (2) ta được \(P\ge\dfrac{9}{4}\).

...

 

14 tháng 1 2021

Ta có: \(\sqrt{a^2+b^2+c^2}\ge\sqrt{\dfrac{\left(a+b+c\right)^2}{3}}=\sqrt{3};\sqrt{a^2+b^2+c^2}\le\sqrt{\left(a+b+c\right)^2}=3\).

Đặt \(\sqrt{a^2+b^2+c^2}=t\) \((\sqrt{3}\leq t\leq 3)\).

Ta có: \(P=t+\dfrac{9-t^2}{4}+\dfrac{1}{t^2}=\dfrac{4t^3+9t^2-t^4+4}{4t^2}\).

\(\Rightarrow P-\dfrac{28}{9}=\dfrac{\left(3-t\right)\left(9t^3-9t^2+4t+12\right)}{36}\).

Do \(\sqrt{3}\le t\le3\) nên \(3-t\geq 0\)\(9t^3-9t^2+4t+12>4t+12>0\).

Nên \(P\ge\dfrac{28}{9}\).

Đẳng thức xảy ra khi t = 3, tức (a, b, c) = (0; 0; 3) và các hoán vị.

Vậy...