K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AD là phân giác nên chia góc A làm A1 = A2 = 60 độ. 

Theo định lí cos : 
BC^2 = AB^2+AC^2 -- 2.AB.AC.cosBAC =63 
=> BC= 3 căn 7 

Theo tính chất của đường phân giác: 
AB/AC = DB/DC 
<=> AB/DB =AC/DC = (AB+AC)/(DB+DC) =9/( 3 căn 7) 

ta có AB/DB=9/27 <=> 3/DB = 9/( 3 căn 7) 
<=> DB = căn 7 

áp dụng định lí cos vào tam giác ABD: 
DB^2 = AB^2+AD^2--2.AB.AD.cos60 
<=>7 = 9 + AD^2 --3.AD 
<=>AD^2 -- 3AD +2 =0 
<=>AD =2 hoặc AD =1 

Thử lại với tam giác ADC: 
+Nếu AD =1 thì : 
DC^2 = AD^2 + AC^2 --2.AD.AC.cos60 = 31 
=> DC = căn 31 
mà DC + DB = BC = 3 căn 7 ( xấp xỉ 7.9) 
căn 31 + căn 7 = 8.21 > BC 
Vậy loại kết quả AD=1 

+Nếu AD=2 
DC^2 = AD^2 + AC^2 --2.AD.AC.cos60 = 28 
=>DC =2 căn 7 
DC + DB = 2 căn 7 + căn 7 = 3 căn 7 = BC ( đúng) 
vậy nhận kết quã AD =2 

12 tháng 1 2017

cho  tam giác ABC ( AB khác AC) . tia phân giác Ax của góc A cắt BC ở D. từ D kẻ một đường thẳng song song với AB cắt AC tại F.từ D kẻ đường thẳng song song với AC cắt AB ở E.

a) CM AE=ED=DF=FA

b) từ trung điểm M của cạnh BC kẻ đường thẳng vuông góc với AC tại Pva cắt đường thẳng AB tại Q.CM EF song song với PQ.

c) CM BP=CQ

1 tháng 3 2015

a)-Gọi chân đường thẳng vuông góc kẻ từ trung điểm D tới phân gác góc BAC là G

=>AG vuông góc với DG => AG vuông góc với EF

-Xét tam giác AFE có AG vừa là phân giác vừa là đường cao => tam giác AFE là tam giác cân và cân tại A(đpcm)

=>góc AFE = góc AEF 

-BM //AC => AFE = BME (đồng vị) => BME = AEF => tam giác BME là tam giác cân và cân tại B(đpcm)

 

b) Xét tam giác CFD và tam giác MBD:

+) FDC = MDB (đối đỉnh)

+) CD=BD (D là trung điểm BC)

+) FCD = DBM ( so le trong - BM //AC)

=> tam giác CFD = tam giác MBD

=> CF = BM ( hai cạnh tương ứng)

- tam giác BME cân tại B (cmt) => BM=BE

=> CF=BE

 

c)-DO là đường trung trực của cạnh BC => BO=CO

-tam giác AFE cân tại A => AG vừa là đường cao vừa là đường trung trực từ đỉnh tới cạnh đáy FE. O nằm trên FE => FO=EO

-Xét tam giác OCF và tam giác OBE:

+) BO=CO (cmt)

+) FO=EO (cmt)

+) CF=BE (cmt)

=> tam giác OCF=tam giác OBE (đpcm)

8 tháng 5 2016

Gọi H là giao điểm của CF vs AB, K là trung điểm AH =&gt; DK&#x2F;&#x2F;GH =&gt; KH&#x2F;BH = DG&#x2F;BG (1) 
Mặt khác dễ thấy tg BCH cân tại B =&gt; BH = CB và theo tính chất phân giác ta có: 
AE&#x2F;CE = AB&#x2F;CB = (AH + BH)&#x2F;BH = AH&#x2F;BH + 1 &lt;=&gt; AH&#x2F;BH = AE&#x2F;CE - 1 = (AE - CE)&#x2F;CE = ((AD + DE) - (CD - DE))&#x2F;CE = 2DE&#x2F;CE (vì AD = CD) 
&lt;=&gt; 2KH&#x2F;BH = 2DE&#x2F;CE &lt;=&gt; KH&#x2F;BH = DE&#x2F;CE (2) 
Từ (1) và (2) =&gt; DE&#x2F;CE = DG&#x2F;BG =&gt; EG&#x2F;&#x2F;BC mà DF&#x2F;&#x2F;AB (do D; F là trung điểm của AC;CH) =&gt; DF đi qua trung điểm của BC =&gt; DF đi qua trung điểm EG (Ta lét(

11 tháng 12 2018

Xét ΔBAC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{12}=\dfrac{CD}{20}\)

mà BD+CD=28cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{12}=\dfrac{CD}{20}=\dfrac{BD+CD}{12+20}=\dfrac{28}{32}=\dfrac{7}{8}\)

Do đó: BD=10,5cm; CD=17,5cm

Xét ΔBAC có 

DE//AB

nên \(\dfrac{DE}{AB}=\dfrac{CD}{BC}\)

\(\Leftrightarrow DE=\dfrac{17.5}{28}\cdot12=7.5\left(cm\right)\)