TÌM STN N
\(n+9⋮n+3\)
\(n^2+4n+6⋮n+4\)
\(3n+14⋮n+2\)
\(13+n⋮2-n\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AI GIÚP MÌNH VỚI LÀM ƠN ĐẤY TÌM STN N
a;\(n+9⋮n+3\)
b;\(n^2+4n+6⋮n+4\)
c;\(3n+14⋮n+2\)
d;\(13+n⋮2-n\)
a,n + 9 \(⋮\)n + 3 và 2( n + 6) \(⋮\)n + 3
\(\Rightarrow\)n + 9 - 2 ( n + 6 ) \(⋮\)n + 3
\(\Rightarrow\) 2( n + 9) - 2 (n+6 ) \(⋮\) n + 3
\(\Rightarrow\)3 chia hết cho n+3
ước 3 là : 1 và 3
n+3 | 1 | 3 |
n | -2 | 0 |
b) \(\Rightarrow\left(n+2\right)\inƯ\left(19\right)=\left\{-19;-1;1;19\right\}\)
Do \(n\in N\)
\(\Rightarrow n\in\left\{17\right\}\)
a) Do \(n\in N\)
\(\Rightarrow n\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)
c) \(\Rightarrow\left(n+1\right)+8⋮\left(n+1\right)\)
Do \(n\in N\Rightarrow n\inƯ\left(8\right)=\left\{1;2;4;8\right\}\)
d) \(\Rightarrow3\left(n+1\right)+18⋮\left(n+1\right)\)
Do \(n\in N\Rightarrow\left(n+1\right)\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\)
\(\Rightarrow n\in\left\{0;1;2;5;8;17\right\}\)
e) \(\Rightarrow\left(n-2\right)+10⋮\left(n-2\right)\)
Do \(n\in N\Rightarrow\left(n-2\right)\inƯ\left(10\right)=\left\{-2;-1;1;2;5;10\right\}\)
\(\Rightarrow n\in\left\{0;1;3;4;7;12\right\}\)
f) \(\Rightarrow n\left(n+4\right)+11⋮\left(n+4\right)\)
Do \(n\in N\Rightarrow\left(n+4\right)\inƯ\left(11\right)=\left\{11\right\}\)
\(\Rightarrow n\in\left\{7\right\}\)
a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)
b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)
\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)
c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)
d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)
\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)
Tìm \(x\) thế \(x\) nào ở đâu trong bài toán vậy em?
1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
\(a=\lim\dfrac{1}{\sqrt{4n+1}+2\sqrt{n}}=\dfrac{1}{\infty}=0\)
\(b=\lim n\left(\sqrt{1+\dfrac{2}{n}}-\sqrt{1-\dfrac{2}{n}}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(c=\lim4^n\left(\sqrt{\left(\dfrac{9}{16}\right)^n-\left(\dfrac{3}{16}\right)^n}-1\right)=+\infty.\left(-1\right)=-\infty\)
\(d=\lim n^3\left(3+\dfrac{2}{n}+\dfrac{1}{n^2}\right)=+\infty.3=+\infty\)
n+9 \(⋮\) n+3
Ta có: n+9 \(⋮\) n+3
\(\Leftrightarrow\) n+3+6 \(⋮\) n+3
Vì n+3 \(⋮\) n+3 nên 6 \(⋮\) n+3
\(\Rightarrow\) n+3\(\inƯ\left(6\right)=\left\{1;2;3;6\right\}\)
\(\Rightarrow\) n\(\in\left\{-2;-1;0;3\right\}\)
Vì n là số tự nhiên nên n \(\in\left\{0;3\right\}\)
Vậy......................
3n+14 \(⋮\) n+2
Ta có: 3n+14 chia hết cho n+2
\(\Leftrightarrow\) 3n+6+8 \(⋮\) n+2
\(\Leftrightarrow\) 3(n+2)+8 \(⋮\) n+2
Vì 3(n+2) \(⋮\) n+2 nên 8 \(⋮\) n+2
\(\Rightarrow\) n+2 \(\inƯ\left(8\right)=\left\{1;2;4;8\right\}\)
\(\Rightarrow\) n\(\in\left\{-1;0;2;6\right\}\)
Vì n là số tự nhiên nên n\(\in\left\{0;2;6\right\}\)
Vậy......................
( Những câu khác tương tự nha bạn)
b: n^2+4n+6 chia hết cho n+4
=>n(n+4)+6 chia hết cho n+4
=>\(n+4\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{-3;-5;-2;-6;-1;-7;2;-10\right\}\)
d: n+13 chia hết cho 2-n
=>n+13 chia hết cho n-2
=>n-2+15 chia hết cho n-2
=>\(n-2\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
=>\(n\in\left\{3;1;5;-1;7;-3;17;-13\right\}\)