K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2019

Nhân 4 vào pt đã cho được

\(4x^4+4x^2-4y^2+4y+40=0\)

\(\Leftrightarrow\left(4x^4+4x^2+1\right)-\left(4y^2-4y+1\right)=-40\)

\(\Leftrightarrow\left(2x^2+1\right)^2-\left(2y-1\right)^2=-40\)

\(\Leftrightarrow\left(2x^2+1-2y+1\right)\left(2x^2+1+2y-1\right)=-40\)

\(\Leftrightarrow\left(2x^2-2y+2\right)\left(2x^2+2y\right)=-40\)

\(\Leftrightarrow\left(x^2-y+1\right)\left(x^2+y\right)=-10\)

Vì \(x;y\inℤ\Rightarrow x^2-y+1;x^2+y\inℤ\)

Ta có: \(x^2+y=x^2-y+1+\left(2y-1\right)\)

Mà 2y - 1 lẻ nên 2 số \(x^2+y;x^2-y+1\) khác tính chẵn lẻ

Lập bảng làm nốt

23 tháng 1 2017

bài 2: (x-3).(y+2) = -5

    Vì x, y \(\in\)Z   => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}

Ta có bảng: 

x-35-5-11
y+21-1-55
x8-224
y-1-3-73



bài 3: a(a+2)<0

TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)

TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
 

           Vậy -2<a<0

23 tháng 1 2017

Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)

TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2

TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại

                         Vậy 1<a<2

29 tháng 2 2020

a,\(\left(x-1\right)^2+\left(y-3\right)^{10}+\left(z+4\right)^{100}=0\)0(1)

Có \(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y-3\right)^{10}\ge0\\\left(z+4\right)^{100}\ge0\end{cases}}\)(2)

Từ (1) và (2)\(\Rightarrow\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-3\right)^{10}=0\\\left(z+4\right)^{100}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-1=0\Rightarrow x=1\\y-3=0\Rightarrow y=3\\z+4=0\Rightarrow z=-4\end{cases}}\)

Em làm tương tự với câu b, không hiểu gì thì hỏi anh

30 tháng 11 2021

A)

 

13 - 12 + 11 + 10 - 9 + 8 - 7 - 6 + 5 - 4 + 3 + 2 - 1

13 - ( 12 + 1 ) - ( 11 + 2 ) - ( 10 + 3 ) - ( 9 + 4 ) - ( 8 + 5 ) + ( 7 + 6 )

13  -      13     -       13     -       13      -     13      -      13     +      13

=        0             -                 0                -               0               +      13

= 13

8 tháng 2 2022

13

20 tháng 10 2018

hoàng lớp 6a3  hkyuhbgj ta ku da

20 tháng 10 2018

Liên quan

19 tháng 6 2016

x-y+z=2 (1)

x+y-z=0 (2)

-x+y+z=4 (3)

Cộng vế theo vế của (1),(2) và (3) ta được:

x-y+z+x+y-z-x+y+z=6

=>x+y+z=6 (4)

Từ -x+y+z=4=>y+z=4+x

Trừ (4) cho (1),vế theo vế:

x+y+z-x+y-z=4

=>2y=4=>y=2

Trừ (4) cho (2),vế theo vế:

x+y+z-x-y+z=6

=>2z=6=>z=3

Mà y+z=4+x=>4+x=2+3=5=>x=1

Vậy x=1;y=2;z=3


 

19 tháng 6 2016

giải hệ ta được : x=1

y=2

z=3

21 tháng 8 2015

Theo đề ta có:

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)

=>\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và x+y-z= 10

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

=>\(\frac{x}{8}=2\)

    \(\frac{y}{12}=2\)

   \(\frac{z}{15}=2\)

=>   x = 16

       y = 24

       z = 30

 bạn kiểm tra lại giúp mình nha!

\(x:2=y:3\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

\(y:4=z:5\Rightarrow\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

\(\frac{x}{8}=\frac{y}{10}=\frac{z}{15}=\frac{x+y-z}{8+10-15}=\frac{10}{5}=2\)

=>x=16;y=20;z=30

vậy (x;y;z)=(16;20;30)