Cho các số a,b,c không âm sao cho a + 3c = 1008 và a + 2b = 1009. Tìm giá trị lớn nhất của biểu thức S = a + b + c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài, a khác b
Nếu muốn các biểu thức nhân, cộng lớn nhất thì các số để nhân,cộng cũng phải lớn nhất
2 số lớn nhất có 1 chữ số là 9 và 8 (a khác b)
Ta có: 9 + 8 = 17 ; 9 x 8 = 72
Vậy giá trị lớn nhất của a + b là 17, của a x b là 72
\(A=139\)
\(\Leftrightarrow720:\left(x-6\right)=40\)
\(\Leftrightarrow x-6=18\)
hay x=24
Áp dụng BĐT \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Ta có : \(\frac{ab}{c+1}=\frac{ab}{a+c+b+c}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{ab}{4\left(a+c\right)}\)
\(+\frac{ab}{4\left(b+c\right)}\)
Thiết lập tương tự và thu lại ta có :
\(P\)\(\le\left[\frac{ab}{4\left(a+c\right)}+\frac{ab}{4\left(b+c\right)}+\frac{bc}{4\left(a+b\right)}+\frac{bc}{4\left(a+c\right)}+\frac{ac}{4\left(a+b\right)}+\frac{ac}{4\left(b+c\right)}\right]\)
\(\Leftrightarrow P\le\frac{ab+bc}{4\left(a+c\right)}+\frac{bc+ac}{4\left(a+b\right)}+\frac{ab+ac}{4\left(b+c\right)}\)
\(\Leftrightarrow P\le\frac{b\left(a+c\right)}{4\left(a+c\right)}+\frac{c\left(a+b\right)}{4\left(a+b\right)}+\frac{a\left(b+c\right)}{4\left(b+c\right)}=\frac{a+b+c}{4}=\frac{1}{4}\)
Vậy \(P_{max}=\frac{1}{4}\)
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
Áp dụng BĐT : \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Ta có :
\(\frac{ab}{c+1}=\frac{ab}{a+c+b+c}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{ab}{4\left(a+c\right)}+\frac{ab}{4\left(b+c\right)}\)
Thiết lập tương tự và thu gọn lại ta có :
\(P\le\left[\frac{ab}{4\left(a+c\right)}+\frac{ab}{4\left(b+c\right)}+\frac{bc}{4\left(a+b\right)}+\frac{bc}{4\left(a+c\right)}+\frac{ac}{4\left(a+b\right)}+\frac{ac}{4\left(b+c\right)}\right]\)
\(\Leftrightarrow P\le\frac{ab+bc}{4\left(a+c\right)}+\frac{bc+ac}{4\left(a+b\right)}+\frac{ab+ac}{4\left(b+c\right)}\)
\(\Leftrightarrow P\le\frac{b\left(a+c\right)}{4\left(a+c\right)}+\frac{c\left(a+b\right)}{4\left(a+b\right)}+\frac{a\left(b+c\right)}{4\left(b+c\right)}=\frac{1}{4}\)
Vậy \(P_{max}=\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Chúc bạn học tốt !!!
Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Ta có : \(\frac{ab}{c+1}=\frac{ab}{a+c+b+c}\le\frac{ab}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{ab}{4\left(a+c\right)}+\frac{ab}{4\left(b+c\right)}\)
Thiết lập tương tự và thu lại ta có
\(P\le\) \(\left[\frac{ab}{4\left(a+c\right)}+\frac{ab}{4\left(b+c\right)}+\frac{bc}{4\left(a+b\right)}+\frac{bc}{4\left(a+c\right)}+\frac{ac}{4\left(a+b\right)}+\frac{ac}{4\left(b+c\right)}\right]\)
\(\Leftrightarrow P\le\frac{ab+bc}{4\left(a+c\right)}+\frac{bc+ac}{4\left(a+b\right)}+\frac{ab+ac}{4\left(b+c\right)}\)
\(\Leftrightarrow P\le\frac{b\left(a+c\right)}{4\left(a+c\right)}+\frac{c\left(a+b\right)}{4\left(a+b\right)}+\frac{a\left(b+c\right)}{4\left(b+c\right)}=\frac{a+b+c}{4}=\frac{1}{4}\)
Vậy \(P_{max}=\frac{1}{4}\)
Dấu " = " xảy ra khi \(a=b=c=\frac{1}{3}\)
Chúc bạn học tốt !!!
a + 3c + a + 2b= 1008 + 1009
=>2a + 2b + 3c=1017
=>2 (a+b+c) + c =1017
vì a+b+c lớn nhất=>2(a+b+c) lớn nhất
=>c nhỏ nhất không âm
=>c=0
=>a=1008
=>b=1/2
vậy a=1008;b=1/2;c=0
cảm ơn bạn nhiều nhé