Bài 3. Cho tam giác ABC, đường trung tuyến AM. Gọi I là trung điểm của AM, D là giao điểm của BI và AC.
a) Chứng minh: AD = 1/2DC
b) Tính tỉ số các độ dài BD và ID
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi K là trung điểm của DC
Xét ΔCBD có
M là trung điểm của BC
K là trung điểm của DC
Do đó: MK là đường trung bình của ΔCBD
Suy ra: MK//BD và \(MK=\dfrac{BD}{2}\)
Xét ΔAMK có
I là trung điểm của AM
ID//MK
Do đó: D là trung điểm của AK
Suy ra: AD=DK
mà DK=KC
nên AD=DK=KC
\(\Leftrightarrow AD=DK=KC=\dfrac{AC}{3}\)
\(\Leftrightarrow DK+DC=\dfrac{AC}{3}+\dfrac{AC}{3}=\dfrac{2}{3}AC\)
\(\Leftrightarrow AD=\dfrac{1}{2}CD\)(đpcm)
b) Xét ΔAMK có
I là trung điểm của AM
D là trung điểm của AK
Do đó: ID là đường trung bình của ΔAMK
Suy ra: \(ID=\dfrac{MK}{2}\)
mà \(MK=\dfrac{BD}{2}\)
nên \(ID=\dfrac{\dfrac{BD}{2}}{2}=\dfrac{BD}{4}\)
\(\Leftrightarrow BD=4\cdot ID\)(đpcm)
a)Lấy điểm N trên tia IB sao cho NI=ID
Xét tam giác NIM và DIA có
IA=IM (giả thiết)
ID=IN
^AID=^MIN
=>Tam giác NIM bằng tam giác DIA
=> ^IAD=^IMN
=> AD//MN
=> MN//DC
mà M là trung điểm của BC
=> MN là đường trung bình của tam giác DBC
=> N là trung điểm BD (1)
Và NM=1/2 DC
Mặt khác MN=AD (tam giác NIM bằng tam giác DIA)
=> AD=1/2 DC =DC/2
b)
Từ (1) => BD=2.ND=2.2.ID=4ID
=> BD/ID=4/1
a: Gọi K là trung điểm của DC
Xét ΔBDC có
M là trung điểm của BC
K là trung điểm của DC
Do đó: MK là đường trung bình của ΔBDC
Suy ra: MK//BD
hay MK//ID
Xét ΔAMK có
I là trung điểm của AM
ID//MK
Do đó: D là trung điểm của AK
Suy ra: AD=DK
mà DK=KC
nên AD=DK=KC
hay \(AD=\dfrac{1}{2}DC\)