K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.

24 tháng 12 2020

GIÚP MÌNH ĐI MỌI NGƯỜI ƠI :3 yeu

15 tháng 7 2021

a) Trong (O) có AB là dây cung không đi qua O và I là trung điểm AB

\(\Rightarrow OI\bot AB\Rightarrow\angle MIO=90\Rightarrow\angle MIO+\angle MCO=90+90=180\)

\(\Rightarrow MIOC\) nội tiếp

b) Vì MC,MD là tiếp tuyến \(\Rightarrow\Delta MCD\) cân tại M có MO là phân giác \(\angle CMD\) \(\Rightarrow MO\bot CD\) mà \(EF\parallel CD\) \(\Rightarrow EF\bot MO\)

tam giác MOE vuông tại O có đường cao OC \(\Rightarrow CM.CE=OC^2\)

tam giác MOC vuông tại C có đường cao HC \(\Rightarrow OH.OM=OC^2\)

\(\Rightarrow OH.OM=CM.CE\)

Vì H là trung điểm CD (\(\Delta MCD\) cân tại M) và \(EF\parallel CD\) 

\(\Rightarrow O\) là trung điểm EF

 \(\Rightarrow S_{MEF}=2S_{MOE}=2.\dfrac{1}{2}.OC.ME=OC.\left(CM+CE\right)\)

\(\ge R.\sqrt{CM.CE}=R.2\sqrt{OC^2}=R.2OC=2R^2\)

\(\Rightarrow S_{MEF_{min}}=2R^2\) khi \(CM=CE=R\left(CM.CE=R^2\right)\)

\(\Rightarrow OM=\sqrt{R^2+R^2}=\sqrt{2}R\)

Vậy M nằm trên d sao cho \(OM=\sqrt{2}R\) thì diện tích tam giác MEF nhỏ nhất \(\left(=2R^2\right)\)

undefined

18 tháng 1 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

A, B, I nhìn MO cố định dưới một góc bằng 90° nên A, B, I nằm trên đường tròn bán kính MO.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

B và C cùng nằm trên một nửa mặt phẳng bờ chứa đường HI tạo với HI một góc bằng nhau nên tứ giác BCHI nội tiếp.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

b: Xét tứ giác MAIO có 

\(\widehat{OIM}=\widehat{OAM}=90^0\)

Do đó: MAIO là tứ giác nội tiếp

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

a: góc HCB+góc HEB=180 độ

=>HCBE nội tiếp

Xét ΔACH vuông tại C và ΔAEB vuông tại E có

góc CAH chung

=>ΔACH đồng dạng với ΔAEB

=>AC/AE=AH/AB

=>AC*AB=AE*AH

b: góc IDH=1/2*sđ cung DB

góc IHD=90 độ-góc AMH=1/2*sđ cung DB

=>góc IDH=góc IHD

=>ΔIHD cân tại I