K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2020

Bạn tự vẽ hình nha

Kẻ đường kính AM của (O) \(\Rightarrow D\in BC\)

\(\widehat{ACM}=90^o;\widehat{ABM}=90^o\)(góc nội tiếp chắn nửa đường tròn)

Ta có: \(\Delta ABH~\Delta AMC\left(g.g\right)\Rightarrow\frac{HB}{CM}=\frac{AB}{AM}\Rightarrow HB.AM=AB.CM\)

\(\Delta HCA~\Delta BMA\left(g.g\right)\Rightarrow\frac{HC}{BM}=\frac{AC}{AM}\Rightarrow HC.AM=AC.BM\)

Chia vế theo vế, ta được: \(\frac{HB}{HC}=\frac{AB.MC}{AC.MB}\left(1\right)\)

Lại có: \(\Delta ADB~\Delta CDM\left(g.g\right)\Rightarrow\frac{DB}{DM}=\frac{AB}{CM}\Rightarrow DB.CM=DM.AB\)

\(\Delta DAC~\Delta DBM\left(g.g\right)\Rightarrow\frac{DC}{DM}=\frac{AC}{BM}\Rightarrow DC.BM=AC.DM\)

Chia vế theo vế, ta được: \(\frac{DB}{DC}=\frac{AB.MB}{AC.MC}\left(2\right)\)

Cộng vế theo vế (1), (2) ta được: \(\frac{HB}{HC}+\frac{DB}{DC}=\frac{AB}{AC}\left(\frac{MC}{MB}+\frac{MB}{MC}\right)\ge\frac{AB}{AC}.2\sqrt{\frac{MC}{MB}.\frac{MB}{MC}}=\frac{2.AB}{AC}\)

Mà \(\frac{AB}{AC}=\frac{sinC}{sinB}\Rightarrow\frac{HB}{HC}+\frac{MB}{MC}\ge\frac{2.sinC}{sinB}\)

Dấu "=" xảy ra khi \(MB=MC\Leftrightarrow AB=AC\Leftrightarrow\Delta ABC\)cân tại A

19 tháng 5 2018

Qua O kẻ đường thẳng d song song với B'C' , d cắt BB' và CC' lần lượt tại D , E

Áp dụng hệ quả định lý Ta - lét , ta có :

\(\Rightarrow\frac{KB'}{OD}=\frac{KH}{OH}=\frac{KC'}{OE}\)  \(\Rightarrow\frac{KB'}{KC'}=\frac{OD}{OE}\left(1\right)\)

Ta có : \(\widehat{BDO}=\widehat{ECO}\)(Vì cùng bằng \(\widehat{BB'C}\)) và \(\widehat{BOD}=\widehat{EOC}\)

\(\Rightarrow\Delta DBO\infty\Delta CEO\)\(\Rightarrow\frac{OD}{OC}=\frac{OB}{OE}\)\(\Rightarrow OD.OE=OC^2\)\(\Rightarrow\frac{OD}{OE}=\frac{OC^2}{OE^2}\)\(\left(2\right)\)

Lấy F \(\left(F\ne E\right)\)trên cùng đường thẳng CC' sao cho \(OE=OF\)

Lại có : \(\widehat{HB'C'}=\widehat{OCF}\)

\(\Rightarrow\Delta B'C'H\infty\Delta CFO\) \(\Rightarrow\frac{HB'}{HC'}=\frac{OC}{OF}\)\(\Rightarrow\frac{HB'}{HC'}=\frac{OC}{OE}\)\(\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\)\(\Rightarrow\frac{KB'}{KC'}=\left(\frac{HB'}{HC'}\right)^2\)\(\left(đpcm\right)\)

a: góc BDH=1/2*sđ cung BH=90 độ

=>HD vuông góc AB

góc HEC=1/2*sđ cung HC=90 độ

=>HE vuông góc AC

góc ADH+góc AEH=180 độ

=>ADHE nội tiếp

b: Xét ΔIDH và ΔIHE có

góc IHD=góc IEH

góc I chung

=>ΔIDH đồng dạng với ΔIHE

=>ID/IH=IH/IE

=>IH^2=ID*IE

2 tháng 4 2020

Vẽ phân giác góc BAC, cắt BC tại E
=> AB/AC = BE/EC
Cần cm : HB/HC)+(MB/MC) 2.BE/EC (1)

Dễ cm dc : góc BAH=góc MAC
Từ C vẽ đường thẳng song song AB cắt AD tại I , AE tại N, AH tại K
=> BH/HC=AB/CK
BE/EC=AB/CN
MB/MC=AB/CI

=> (1) <=> AB/CK+AB/CI≥2AB/CN
<=> 1/CK+1/CI≥2/CN

ta có tam giác CAK cân tại C (dễ cm dc) => AC=CN
=> (2) <=> 1/CK+1/CI≥1/AC

ta có góc CAI =BAH ( cm rồi)
và góc BAH=AKC (so le trong) =>góc CAD=AKC => tam giác IAC ~ tam giác AKC
=> CK.CI=AC2

Ta có (3) <=>CK+CI/CK.CI≥2AC
⇔CK+CI/AC2≥2AC
⇔CK+CI≥2AC
⇔CK+CI≥2. căn(CK.CI)
=> đpcm