K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

đây là toán lớp 7 thật à.......

nếu là lớp 7 không được áp dụng tam giác đồng dạng thì sao làm được?

17 tháng 1 2019

mình đang học lớp 7 cũng ko thấy dạng này

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Lời giải:

Áp dụng định lý Pitago:

$AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-5^2}=12$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{5.12}{13}=\frac{60}{13}$ (cm)

$CH=\sqrt{AC^2-AH^2}=\sqrt{12^2-(\frac{60}{13})^2}=\frac{144}{13}$ (cm)

$BH=BC-CH=13-\frac{144}{13}=\frac{25}{13}$ (cm)

 

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Hình vẽ:

undefined

3 tháng 3 2020

Mọi người giúp mình giải bài này với

Mk cảm ơn mn nhìu

13 tháng 3 2020

Tham khảo link này : https://olm.vn/hoi-dap/detail/246132528674.html

13 tháng 2 2022

Áp dụng định lí Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=12cm\)

Ta có : \(S_{ABC}=\dfrac{1}{2}AB.AC;S_{ABC}=\dfrac{1}{2}AH.BC\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{60}{13}cm\)

Theo định lí Pytago tam giác ABH vuông tại H

\(BH=\sqrt{AB^2-AH^2}=\dfrac{25}{13}cm\)

-> CH = BC - BH = \(13-\dfrac{25}{13}=\dfrac{154}{13}\)cm 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

\(BH=\sqrt{12^2-9.6^2}=7.2\left(cm\right)\)

a: BC=25cm

\(AB=\sqrt{12^2+9^2}=15\left(cm\right)\)

\(AC=\sqrt{12^2+16^2}=20\left(cm\right)\)

Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Hai câu còn lại bạn ghi lại đề phần BH đi bạn