K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2021

cho tam giác ABC vuông tại A có ^B = x 

Ta có : \(sinx=\frac{AC}{BC}\Rightarrow sin^2x=\left(\frac{AC}{BC}\right)^2\)(1) 

\(cos=\frac{AB}{BC}\Rightarrow cos^2x=\left(\frac{AB}{BC}\right)^2\)(2) 

Cộng (1) ; (2) ta được : \(\frac{AC^2}{BC^2}+\frac{AB^2}{BC^2}=\frac{AC^2+AB^2}{BC^2}=\frac{BC^2\left(pytago\right)}{BC^2}=1\)

Vậy ta có đpcm 

NV
21 tháng 4 2021

a.

Thực hiện phép biến đổi tương đương:

\(\dfrac{sinx+cosx-1}{1-cosx}=\dfrac{2cosx}{sinx-cosx+1}\)

\(\Leftrightarrow\left(sinx+cosx-1\right)\left(sinx-cosx+1\right)=2cosx\left(1-cosx\right)\)

\(\Leftrightarrow sin^2x-\left(cosx-1\right)^2=2cosx-2cos^2x\)

\(\Leftrightarrow sin^2x-cos^2x+2cosx-1=2cosx-2cos^2x\)

\(\Leftrightarrow1-cos^2x-cos^2x-1=-2cos^2x\)

\(\Leftrightarrow-2cos^2x=-2cos^2x\) (luôn đúng)

Vậy đẳng thức đã cho được chứng minh

b.

\(cot^2x-cos^2x=\dfrac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\dfrac{1}{sin^2x}-1\right)=\dfrac{cos^2x\left(1-sin^2x\right)}{sin^2x}=cot^2x.cos^2x\)

NV
8 tháng 2 2021

Câu 1 đề sai, chắc chắn 1 trong 2 cái \(cot^2x\) phải có 1 cái là \(cos^2x\)

2.

\(\dfrac{1-sinx}{cosx}-\dfrac{cosx}{1+sinx}=\dfrac{\left(1-sinx\right)\left(1+sinx\right)-cos^2x}{cosx\left(1+sinx\right)}=\dfrac{1-sin^2x-cos^2x}{cosx\left(1+sinx\right)}\)

\(=\dfrac{1-\left(sin^2x+cos^2x\right)}{cosx\left(1+sinx\right)}=\dfrac{1-1}{cosx\left(1+sinx\right)}=0\)

3.

\(\dfrac{tanx}{sinx}-\dfrac{sinx}{cotx}=\dfrac{tanx.cotx-sin^2x}{sinx.cotx}=\dfrac{1-sin^2x}{sinx.\dfrac{cosx}{sinx}}=\dfrac{cos^2x}{cosx}=cosx\)

4.

\(\dfrac{tanx}{1-tan^2x}.\dfrac{cot^2x-1}{cotx}=\dfrac{tanx}{1-tan^2x}.\dfrac{\dfrac{1}{tan^2x}-1}{\dfrac{1}{tanx}}=\dfrac{tanx}{1-tan^2x}.\dfrac{1-tan^2x}{tanx}=1\)

5.

\(\dfrac{1+sin^2x}{1-sin^2x}=\dfrac{1+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}+tan^2x=\dfrac{sin^2x+cos^2x}{cos^2x}+tan^2x\)

\(=tan^2x+1+tan^2x=1+2tan^2x\)

11 tháng 4 2021

\(\dfrac{sin^2x-cos^2x+cos^4x}{cos^2x-sin^2x+sin^4x}=\dfrac{1-2cos^2x+cos^4x}{1-2sin^2x+sin^4x}==\dfrac{\left(cos^2x-1\right)^2}{\left(sin^2-1\right)^2}=\dfrac{sin^4x}{cos^4x}=tan^4x\)

 

3 tháng 9 2021

\(sin^4x+cos^2x.sin^2x+sin^2x\)

\(=sin^2x.\left(sin^2x+cos^2x\right)+sin^2x\)

\(=sin^2x+sin^2x\)

\(=2sin^2x\)

9 tháng 4 2017

\(\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\tan^2x-1}\)

\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\sin x+\cos x}{\frac{\sin^2x-\cos^2x}{\cos^2x}}\)

\(=\frac{\sin^2x}{\sin x-\cos x}-\frac{\cos^2x}{\sin x-\cos x}=\sin x+\cos x\)

 Xong

9 tháng 4 2017

Tạm thời chưa  hiểu gì cả

hãy đợi đó

9 tháng 6 2020

Ta có: \(\sin^6x+\cos^6x=\left(\sin^2x\right)^3+\left(\cos^2x\right)^3\)

\(=\left(\sin^2x+\cos^2x\right)^3-3\left(\cos^2x+\sin^2x\right)\cos^2x.\sin^2x\)

\(=1-3\sin^2x.\cos^2x\)

a: tan x(cot^2x-1)

\(=\dfrac{1}{cotx}\left(cot^2x-cotx\cdot tanx\right)\)

=cotx-tanx/cotx=cotx(1-tan^2x)

b: \(tan^2x-sin^2x=\dfrac{sin^2x}{cos^2x}-sin^2x\)

\(=sin^2x\left(\dfrac{1}{cos^2x}-1\right)=sin^2x\cdot\dfrac{sin^2x}{cos^2x}=sin^2x\cdot tan^2x\)

c: \(\dfrac{cos^2x-sin^2x}{cot^2x-tan^2x}=\dfrac{cos^2x-sin^2x}{\dfrac{cos^2x}{sin^2x}-\dfrac{sin^2x}{cos^2x}}\)

\(=\left(cos^2x-sin^2x\right):\dfrac{cos^4x-sin^4x}{sin^2x\cdot cos^2x}\)

\(=\dfrac{sin^2x\cdot cos^2x}{1}=sin^2x\cdot cos^2x\)

=>sin^2x*cos^2x-cos^2x=cos^2x(sin^2x-1)

=-cos^2x*cos^2x=-cos^4x

=>ĐPCM

18 tháng 5 2017

a) \(\left(sinx+cosx\right)^2=sin^2x+2sinxcosx+cos^2x\)\(=1+2sinxcosx\).
b) \(\left(sinx-cosx\right)^2=sin^2x-2sinxcosx+cos^2x\)\(=1-2sinxcosx\).
c) \(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\)
\(=1-2sin^2xcos^2x\).

NV
17 tháng 6 2020

\(\frac{1+sin2x}{sin^2x-cos^2x}=\frac{sin^2x+cos^2x+2sinx.cosx}{\left(sinx-cosx\right)\left(sinx+cosx\right)}=\frac{\left(sinx+cosx\right)^2}{\left(sinx-cosx\right)\left(sinx+cosx\right)}\)

\(=\frac{sinx+cosx}{sinx-cosx}=\frac{\frac{sinx}{cosx}+\frac{cosx}{cosx}}{\frac{sinx}{cosx}-\frac{cosx}{cosx}}=\frac{tanx+1}{tanx-1}\)