K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2021

\(3\sqrt{3}=\sqrt{27}mà\sqrt{27}< \sqrt{29}=>3\sqrt{3}< \sqrt{29}\)

24 tháng 6 2015

 

Vì: \(\frac{3}{21}=\frac{3}{21}\)

\(\frac{3}{22}\) < \(\frac{3}{21}\)

\(\frac{3}{23}\) < \(\frac{3}{21}\)

\(\frac{3}{24}\)<\(\frac{3}{21}\)

\(\frac{3}{25}\)\(\frac{3}{21}\)

.....

\(\frac{2}{29}\)<\(\frac{3}{21}\)

\(\frac{2}{30}\)<\(\frac{3}{21}\)

Nên \(\frac{3}{21}+\frac{3}{22}+\frac{3}{23}+\frac{3}{24}+\frac{3}{25}+...+\frac{3}{29}+\frac{3}{30}\) < \(\frac{3}{21}.10\)

Ta có: \(\frac{3}{21}.10\) = \(\frac{10}{7}\)

Mà \(\frac{10}{7}\) < \(\frac{3}{2}\)

=>\(\frac{3}{21}+\frac{3}{22}+\frac{3}{23}+\frac{3}{24}+\frac{3}{25}+...+\frac{3}{29}+\frac{3}{30}\) < \(\frac{3}{2}\)

Vậy E < M

2 tháng 11 2018

\(\sqrt{29}>\sqrt{25}\)= 5
\(\sqrt{3}>1\)
\(\sqrt{2003}>\sqrt{1936}=44\)
Cộng từng vế của ba bất đẳng thức ta được 
\(\sqrt{29}+\sqrt{3}+\sqrt{2003}\) > 1+5 +44 = 50

2 tháng 11 2018

\(\sqrt{29}>\sqrt{25}=5\)

\(\sqrt{3}>\sqrt{1}=1\)

\(\sqrt{2003}>\sqrt{1936}=44\)

\(=>\sqrt{29}+\sqrt{3}+\sqrt{2003}>5+1+44=50\)

15 tháng 6 2016

Tính từ máy tính casio fx 570 es plus hoặc fx 570 vn plus

Ta thu đc kết quả:

A>B

15 tháng 1 2018

a, (-3).1574.(-7).(-11).(-10) > 0

b. 25-(-37).(-29).(-154).2 > 0

Tk mk nha

9 tháng 4 2020

21/29 > 11/29 => -21/19 < -11/29

3/14 = 6/28 < 15/28

9 tháng 4 2020

\(-\frac{21}{29}>-\frac{11}{29}\)

\(\frac{3}{14}\Leftrightarrow\frac{6}{28}< \frac{15}{28}\)

Chúc bạn học tốt !

8 tháng 9 2015

\(\sqrt{29}+\sqrt{3}+\sqrt{2015}>\sqrt{25}+\sqrt{1}+\sqrt{1936}\)\(=5+1+44=50\)

\(\text{Vậy }\sqrt{29}+\sqrt{3}+\sqrt{2015}>50\)

8 tháng 9 2015

50 bé hơn

đúng 100%

25 tháng 3 2017

S > 1/3

25 tháng 3 2017

ta thấy \(\frac{1}{20}\)<\(\frac{1}{3}\)

thì \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{20}\)+...+\(\frac{1}{20}\)<\(\frac{1}{3}\)

vậy \(\frac{1}{20}\)+...+\(\frac{1}{29}\)<\(\frac{1}{3}\)

24 tháng 3 2022

Số số hạng của tổng A là : \(\dfrac{30-21}{1}+1=10\left(sh\right)\)

`=>A=\underbrace{1/21+1/22+...+1/30}_{10sh}>\underbrace{1/30+1/30+1/30+...+1/30}_{10sh}`

`=>A>(1)/(30).10`

`=>A>10/30`

`=>A>1/3`

`=>đpcm`