K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2023

Bài 1:
Ta có dãy số 2, 4, 6, ..., 2n là một dãy số chẵn liên tiếp.
Ta có công thức tổng của dãy số chẵn liên tiếp là: S = (a1 + an) * n / 2
Với a1 là số đầu tiên của dãy, an là số cuối cùng của dãy, n là số phần tử của dãy.
Áp dụng công thức trên vào bài toán, ta có:
(2 + 2n) * n / 2 = 756
(2n + 2) * n = 1512
2n^2 + 2n = 1512
2n^2 + 2n - 1512 = 0
Giải phương trình trên, ta được n = 18 hoặc n = -19.
Vì n là số tự nhiên nên n = 18.
Vậy số tự nhiên n cần tìm là 18.

Bài 2:
Ta có p = (n - 2)(n^2 + n - 5)
Để p là số nguyên tố, ta có hai trường hợp:
1. n - 2 = 1 và n^2 + n - 5 = p
2. n - 2 = p và n^2 + n - 5 = 1
Xét trường hợp 1:
n - 2 = 1
=> n = 3
Thay n = 3 vào phương trình n^2 + n - 5 = p, ta có:
3^2 + 3 - 5 = p
9 + 3 - 5 = p
7 = p
Vậy n = 3 và p = 7 là một cặp số nguyên tố thỏa mãn.

Xét trường hợp 2:
n - 2 = p
=> n = p + 2
Thay n = p + 2 vào phương trình n^2 + n - 5 = 1, ta có:
(p + 2)^2 + (p + 2) - 5 = 1
p^2 + 4p + 4 + p + 2 - 5 = 1
p^2 + 5p + 1 = 1
p^2 + 5p = 0
p(p + 5) = 0
p = 0 hoặc p = -5
Vì p là số nguyên tố nên p không thể bằng 0 hoặc âm.
Vậy không có số tự nhiên n thỏa mãn trong trường hợp này.

Vậy số tự nhiên n cần tìm là 3.

28 tháng 7 2023

Bài 1

...=((2n-2):2+1):2=756

(2(n-1):2+1)=756×2

n-1+1=1512

n=1512

14 tháng 11 2023

giúp mik với

 

14 tháng 11 2023

nnhé

 

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

Lời giải:

Để $p=(n-2)(n^2+n-5)$ là số nguyên tố thì bản thân 1 trong 2 thừa số $n-2, n^2+n-5$ là số nguyên tố và số còn lại bằng 1.

TH1: $n-2=1\Rightarrow n=3$. Khi đó: $p=7$ là số nguyên tố (thỏa mãn) 

TH2: $n^2+n-5=1\Rightarrow n^2+n-6=0\Rightarrow (n-2)(n+3)=0$

$\Rightarrow n=2$ 

$\Rightarrow p=0$ không là snt (loại) 

Vậy $n=3$

17 tháng 11 2015

Tham khảo câu hỏi tương tự nhé bạn .

Tick tớ đc chứ 

15 tháng 11 2015

chờ chút để giở sách

18 tháng 7 2016

Ta thấy để p là nguyên tố thì n-2 =1 hoặc n^2 +n -1 =1 
Vì nếu 2 số lớn hơn 1 thì p là hợp số 

do luôn có n^2 +n - 1 > n -2 

=> n-2 =1 => n=3 

=> p =11

1,

Đặt A = n3 - n2 + n - 1

Ta có A = n2(n - 1) + (n - 1) = (n - 1)(n2 + 1)

Vì A nguyên tố nên A chỉ có 2 Ư. Ư thứ 1 là 1 còn Ư thứ 2 nguyên tố nên ta suy ra 2 trường hợp :

TH1 : n - 1 = 1 và n2 + 1 nguyên tố 

n = 2 và n2 + 1 = 5 nguyên tố (thỏa)

TH2 : n2 + 1 = 1 và n - 1 nguyên tố 

n = 0 và n - 1 = - 1( ko thỏa)

Vậy n = 2

2 , 

Xột số   A = (2n – 1)2n(2n + 1)

A là tích của 3 số tự nhiên liờn tiệp nên A   ⋮   3  

Mặt khỏc 2n – 1 là số nguyên tố   ( theo giả thiết )

                2n  không chia hết cho 3

Vậy 2n + 1 phải chia hết cho 3 ⇒  2n + 1 là hợp số.