A=1+2+2^2+.....2^50
B= 1+3+3^2+3^3+...+3^50
C=1+3^2+3^4+.......+3^40
5 BẠN ĐÚNG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: 1-2+3-4+...+99-100
=(1-2)+(3-4)+...+(99-100)
=(-1)+(-1)+...+(-1)
=-1*50=-50
c: 1+2-3-4+....+97+98-99-100
=(1+2-3-4)+(5+6-7-8)+...+(97+98-99-100)
=(-4)+(-4)+...+(-4)
=(-4)*25=-100
a) A = 1 + 2 + 3 + 4+... + 50;
Tổng A có 50 số hạng nên A = (1 + 50).50:2 = 1275,
b) B = 2 + 4 + 6 + 8 + ...+100;
Số số hạng của tổng B là: (100 - 2): 2+1 = 50 (số)
Do đó B = (2 +100).50 : 2 = 2550.
c) C = 1 + 3 + 5 + 7 +... + 99;
Số số hạng của tổng C là: (99 - 1): 2 +1 = 50 (số)
Do đó C = (1 + 99). 50 : 2 = 2500.
d = 2 + 5 + 8 + 11 .... 98
= ( 92 - 2 ) : 3 + 1 = 33
= 33 . ( 98 + 2 ) : 2
= 1650
tick cho tớ với
A = -2.24 = -48
B= -2 . 49 = -98
C = -4 . 25 =-100
Đúng thì like giúp mik nha bạn
a: từ 1 đến 100 sẽ có \(\dfrac{100-1}{1}+1=100-1+1=100\left(số\right)\)
=>Sẽ có \(\dfrac{100}{2}=50\) cặp số
1-2+3-4+...+99-100
=(1-2)+(3-4)+...+(99-100)
=(-1)+(-1)+...+(-1)
=-1*50=-50
b: Sửa đề: \(2-4+6-8+...+46-48+50\)
Từ 2 đến 48 sẽ có \(\dfrac{48-2}{2}+1=24-1+1=24\left(số\right)\)
=>Sẽ có \(\dfrac{24}{2}=12\left(cặp\right)\)
\(2-4+6-8+...+46-48+50\)
\(=\left(2-4\right)+\left(6-8\right)+...+\left(46-48\right)+50\)
\(=\left(-2\right)+\left(-2\right)+...+\left(-2\right)+50\)
\(=50-2\cdot24=50-48=2\)
c: Đặt A=\(1+2-3+4+...+97+98-99+100\)
\(=\left(1+2-3+4\right)+\left(5+6-7+8\right)+...+\left(97+98-99+100\right)\)
\(=4+12+...+196\)
Từ 4 đến 196 sẽ có \(\dfrac{196-4}{8}+1=\dfrac{192}{8}+1=25\left(số\right)\)
Tổng của dãy A là: \(\left(196+4\right)\cdot\dfrac{25}{2}=\dfrac{25}{2}\cdot200=100\cdot25=2500\)
a: ta có: \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)
\(\Leftrightarrow8x-24x^2+2-6x+24x^2-60x-4x+40=-50\)
\(\Leftrightarrow-62x=-92\)
hay \(x=\dfrac{46}{31}\)
b: ta có: \(\left(1-4x\right)\left(x-1\right)+4\left(3x+2\right)\left(x+3\right)=38\)
\(\Leftrightarrow x-1-4x^2+4x+4\left(3x^2+9x+2x+6\right)=38\)
\(\Leftrightarrow-4x^2+5x-1+12x^2+44x+24-38=0\)
\(\Leftrightarrow8x^2+49x-15=0\)
\(\text{Δ}=49^2-4\cdot8\cdot\left(-15\right)=2881\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-49-\sqrt{2881}}{16}\\x_2=\dfrac{-49+\sqrt{2881}}{16}\end{matrix}\right.\)
\(1,\\ a,\Leftrightarrow4^{5-x}=4^2\Leftrightarrow5-x=2\Leftrightarrow x=3\\ b,\Leftrightarrow\left[{}\begin{matrix}x-1=5\\x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\\ c,\Leftrightarrow2x+1=3\Leftrightarrow x=2\\ 2,\\ a,3^{100}=\left(3^2\right)^{50}=9^{50}\\ b,2^{98}=\left(2^2\right)^{49}=4^{49}< 9^{49}\\ c,5^{30}=5^{29}\cdot5< 6\cdot5^{29}\\ d,3^{30}=\left(3^3\right)^{10}=27^{10}>8^{10}\\ 4,\\ a,\Leftrightarrow5\left(x-10\right)=10\\ \Leftrightarrow x-10=2\Leftrightarrow x=12\\ b,\Leftrightarrow3\left(70-x\right)+5=92\\ \Leftrightarrow3\left(70-x\right)=87\\ \Leftrightarrow70-x=29\\ \Leftrightarrow x=41\\ c,\Leftrightarrow16+x-5=315-230=85\\ \Leftrightarrow x=74\\ d,\Leftrightarrow2^x-5+74=707:\left(16-9\right)=707:7=101\\ \Leftrightarrow2^x=32=2^5\\ \Leftrightarrow x=5\)
S dau tien ne ta có (2016-1):2=1007,5 => ghép được 1007 cap va thua ra 1 so
ta có :(1-2)+(3-4)+........+(2015-2016)+2014
=-1+-1+-1+......+-1+2014
=-1007+2014=1007
B=1+3+3^2+3^3+...+3^100
3B=3+3^2+3^3+3^4+...+3^101
3B-B=3+3^2+3^3+3^4+...+3^101-1-3-3^2-3^3-...-3^100
2B=3^101-1
B=(3^101-1):2
a) Số các số hạng trong A là: \(\left(25-1\right):1+1=25\) (số)
Tổng A bằng: \(\left(25+1\right)\cdot25:2=325\)
b) Số các số hạng trong B là: \(\left(50-2\right):2+1=25\) (số)
Tổng B bằng: \(\left(50+2\right)\cdot25:2=650\)
c) Số các số hạng trong C là: \(\left(81-1\right):4+1=21\) (số)
Tổng C bằng: \(\left(81+1\right)\cdot21:2=861\)
#Urushi
a: Số số hạng là:
50-1+1=50(số)
Tổng của dãy là:
\(\dfrac{\left(50+1\right)\cdot50}{2}=1275\)
b: Số số hạng là:
(100-2):2+1=50(số)
Tổng của dãy là:
\(\dfrac{\left(100+2\right)\cdot50}{2}=2550\)
B = \(\frac{1}{10.9}+\frac{1}{18.13}+\frac{1}{26.17}+...+\frac{1}{802.405}\)
B = \(\frac{2}{10.18}+\frac{2}{18.26}+\frac{2}{26.34}+...+\frac{2}{802.810}\)
B = \(\frac{1}{4}.\left(\frac{1}{10}-\frac{1}{18}+\frac{1}{18}-\frac{1}{26}+\frac{1}{26}-\frac{1}{34}+...+\frac{1}{802}-\frac{1}{810}\right)\)
B = \(\frac{1}{4}.\left(\frac{1}{10}-\frac{1}{810}\right)=\frac{1}{4}.\frac{8}{81}\)
B = \(\frac{2}{81}\)
A= 2^51-1
B= (3^51-1) : 2
C= (3^42-1) : 8
ta có
A =20+21+22+...+250
2A =(20+21+22+...+250).2
=21+22+23+...+251
2A-A=(21+22+23+...+251)-(20+21+22+...250)
=21+22+23+...+251-20-21-22-...-250
A =251-1
B =30+1+32+...+350
3B =(30+31+32+...+350).3
=31+32+33+...+351
3B-B =(31+32+33+...+351)-(30+31+32+...350)
=31+32+33+...+351-30-31-32-...-350
2B =351-1
B =(351-1):2
C =1+32+34+.......+340
9C =(30+32+...+340).32
=32+34.+342
9C-C =(32+34...+342)-(30+32+...342)
=32+34...+342-30-32-...-340
8C =342-1
C =(342-1):8