Chứng minh rằng (n+108) x (n+109) chia hết cho 2 với mọi số n
Giải cụ thẻ giùm mình nha !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mọi số tự nhiên n đều đc viết dưới dạng : 2k hoặc 2k + 1
+ Nếu n = 2k => n + 4 = 2k + 4 chia hết choa 2
=> ( n + 4 ) ( n + 5 ) chia hết cho 2
+ Nếu n = 2k + 1 => n + 5 = 2k +1 + 5 = 2k + 6 chia hết cho 2
=> ( n + 4 ) ( n + 5 ) chia hết cho 2
Vậy : Với mọi số tự nhiên n thì ( n + 4 ) ( n + 5 ) chia hết cho 2
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !
có ;1.2.3.4.......100 chia het cho 3
ma 16 ko chia het cho 3
suy ra 1..2.3...100+16 ko chia het cho 3
tick nhe
n(n+3)(n+6)
n(n2+9n+18)
n[(n+1)(n+2)+6n+16)]
n(n+1)(n+2)+6n2+16n chia hết 2
kb với mình nhé
bài này dễ mà. như sau nhé :
(5n+2)2-4= 25n2+20n+4-4 (áp dụng hằng đẳng thức số 1)
= 25n2+20n
Vì 25 chia hết cho 5 => 25n2 chia hết cho 5 với mọi số nguyên n
20 chia hết cho 5 => 20n chia hết cho 5 với mọi số nguyên n
=> (25n2 + 20n) chia hết cho 5 với mọi số nguyên n
=> (5n +2)2 - 4 chia hết cho 5 với mọi số nguyên n
k cko mk nhé !!!
ta có : n+18 và n+19 là hai số tự nhiên liên tiếp
nên tích của chúng là một số chẵn
mà một số chẵn luôn chia hết cho hai
vậy nó chia hết cho 2