Chứng minh rằng nếu P là tích của n số nguyên đầu tiên thì p-1; p+1 không thể là số chình phương
GIÚP MÌNH VỚI NHA CÁC BẠN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chứng minh p+1 là số chính phương:
Giả sử phản chứng p+1 là số chính phương . Đặt p+1 = m² (m∈N)
Vì p chẵn nên p+1 lẻ => m² lẻ => m lẻ.
Đặt m = 2k+1 (k∈N). Ta có m² = 4k² + 4k + 1 => p+1 = 4k² + 4k + 1 => p = 4k² + 4k = 4k(k+1) chia hết cho 4. Mâu thuẫn với (*)
Vậy giả sử phản chứng là sai, tức là p+1 là số chính phương
Ta chứng minh p-1 là số chính phương:
Ta có: p = 2.3.5… là số chia hết cho 3 => p-1 có dạng 3k+2.
Vì không có số chính phương nào có dạng 3k+2 nên p-1 không là số chính phương .
Vậy nếu p là tích n số nguyên tố đầu tiên thì p-1 và p+1 không là số chính phương (đpcm)
Nhận xét:Một số chính phương khi chia cho 3 và 4 có số dư là 0 hoặc 1(không chứng minh được thì ib vs mik)
Từ giả thiết,suy ra p chia hết cho 2 và 3 nhưng không chia hết cho 4
Như vậy vì p chia hết cho 3 suy ra p-1 chia 3 dư 2.suy ra p-1 không là số chính phương.(1)
Mặt khác p chia hết cho 2 mà không chia hết cho 4 suy ra p chia 4 dư 2 suy ra p+1 chia 4 dư 3 không là số chính phương.(2)
Từ (1) và (2) suy ra điều cần chứng minh.