Cho tứ giác ABCD có 2 đường chéo AC và BD vuông góc với nhau.Gọi M ; N ; I ; K lần lượt là trung điểm AB ;BC; CD ;DA.
a,Chứng minh tứ giác MNIK là hình bình hành
b,Chứng minh tứ giác MNIK là hình chữ nhật
c,Chứng minh MI = MK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có M, N lần lượt là trung điểm của AB, AD nên MN là đường trung bình của ∆ABD => MN // BD
Mà AC⊥BD nên MN⊥AC hay LA⊥MN (1)
N, L lần lượt là trung điểm của AD, AC nên NL là đường trung bình của ∆ADC => NL // DC
Mà MH⊥DC nên NL⊥MH (2)
Từ (1) và (2) suy ra H là trực tâm của tam giác MNL (đpcm)
tgiác ABC có MN là đường trung bình => MN // AC và MN = AC/2
tgiác DAC có PQ là đường trung bình => PQ // AC và PQ = AC/2
vậy: MN // PQ và MN = PQ => MNPQ là hình bình hành
mặt khác xét tương tự cho hai tgiác ABD và CBD ta cũng có:
NP // BD và NP = BD/2
do giả thiết AC_|_BD => AC_|_NP mà MN // AC => MN_|_NP
tóm lại MNPQ là hình chữ nhật (hbh có một góc vuông)
b) MNPQ là hình vuông <=> MN = NP <=> AC/2 = BD/2 <=> AC = BD
vậy điều kiện là: tứ giác ABCD có hai đường chéo vuông góc và bằng nhau
c, Vỳ Mn là đườq trung bình của tam giác ABC nên MN= \(\frac{1}{2}\) AC= 3cm
QM là đường trung bình của tam giác ABD nên QM = \(\frac{1}{2}\) BD = 4cm
Mà MNPQ là hình chữ nhật nên diện tích ABCD = ( MN+PQ).2= (3.4):2 = 6cm
Bạn ơi lẽ ra chỗ diện tích hcn là phải bằng = 3 . 4 = 12cm chứ nhỉ bạn
Xét ΔABD có
M,Q lần lượt là trung điểm của AB,AD
=>MQ là đường trung bình của ΔABD
=>MQ//BD và MQ=BD/2(1)
Xét ΔCBD có
N,P lần lượt là trung điểm của CB,CD
=>NP là đường trung bình của ΔCBD
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy ra MQ//NP và MQ=NP
Xét ΔBAC có
M,N lần lượt là trung điểm của BA,BC
=>MN là đường trung bình
=>MN//AC
MN//AC
AC\(\perp\)BD
Do đó: MN\(\perp\)BD
MN\(\perp\)BD
MQ//BD
Do đó: MN\(\perp\)MQ
Xét tứ giác MNPQ có
MQ//NP
MQ=NP
Do đó: MNPQ là hình bình hành
Hình bình hành MNPQ có \(\widehat{NMQ}=90^0\)
nên MNPQ là hình chữ nhật
=>M,N,P,Q cùng nằm trên 1 đường tròn
Vì ABCD có đường chéo vuông góc nên
SABCD = 1 2 BD. AC
=> AC = 2 S A B C D B D = 2.56 7 = 16 cm.
Đáp án cần chọn là: D
SABCD = 1 2 BD. AC
=> AC = 2 S A B C D B D = 2.25 5 = 10 cm.
Đáp án cần chọn là: A
a: Xét ΔABD có
M là trung điểm của AB
K là trung điểm của AD
Do đó: MK là đường trung bình của ΔBAD
Suy ra: MK//BD và \(MK=\dfrac{BD}{2}\left(1\right)\)
Xét ΔCBD có
N là trung điểm của BC
I là trung điểm của CD
Do đó: NI là đường trung bình của ΔCBD
Suy ra: NI//BD và \(NI=\dfrac{BD}{2}\left(2\right)\)
Từ (1) và (2) suy ra MK//NI và MK=NI
hay MKIN là hình bình hành