Rút gon:
\(\sqrt{\dfrac{x^2+2x+1}{16x^2}}\) với \(x\) ≤ -1
Nhờ mọi người làm rõ ràng hộ em ạ, em cảm ơn <3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
Câu 12.
\(5\sqrt{a}+6\sqrt{\dfrac{a}{4}}-a\sqrt{\dfrac{4}{a}}+5\sqrt{\dfrac{4a}{25}}\)
\(=5\sqrt{a}+6\dfrac{\sqrt{a}}{2}-a\cdot\dfrac{2}{\sqrt{a}}+5\dfrac{2\sqrt{a}}{5}\)
\(=5\sqrt{a}+3\sqrt{a}-2\sqrt{a}+2\sqrt{a}\) (vì a>0)
\(=8\sqrt{a}\)
\(a,A=\left(\dfrac{x+14\sqrt{x}-5}{x-25}+\dfrac{\sqrt{x}}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)
\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\dfrac{x+14\sqrt{x}-5+x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\dfrac{2x+9\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)
\(\Rightarrow A=\dfrac{2x+10\sqrt{x}-\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)-\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
\(\Rightarrow A=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)
\(\Rightarrow A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}\)
\(A=\dfrac{\left(x-\sqrt{2}\right)^2}{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}=\dfrac{x-\sqrt{2}}{x+\sqrt{2}}\)
\(B=\dfrac{x+\sqrt{5}}{\left(x+\sqrt{5}\right)^2}=\dfrac{1}{x+\sqrt{5}}\)
\(A=\sqrt{\left(x+2\right)^2+7}+\sqrt{\left(x-4\right)^2+7}\)
Dạng bài này sử dụng bất đẳng thức Mincopxki \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\text{ }\left(1\right)\)
Chứng minh:
\(\left(1\right)\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\ge\left(a+c\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)
\(+\text{Nếu }ac+bd< 0\text{ thì }VT\ge0>VP,\text{ bđt luôn đúng.}\)
\(\text{+Nếu }ac+bd>0\)
\(\text{bđt}\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\)
Do bđt cuối đúng nên bất đẳng thức đã cho cũng đúng.
Vậy ta có đpcm.
Dấu bằng xảy ra khi \(ad=bc\)
\(A=\sqrt{\left(x+2\right)^2+\left(\sqrt{7}\right)^2}+\sqrt{\left(4-x\right)^2+\left(\sqrt{7}\right)^2}\)
\(\ge\sqrt{\left(x+2+4-x\right)^2+\left(\sqrt{7}+\sqrt{7}\right)^2}\)
\(=\sqrt{64}=8.\)
Dấu bằng xảy ra khi \(\left(x+2\right).\sqrt{7}=\left(4-x\right).\sqrt{7}\Leftrightarrow x+2=4-x\Leftrightarrow x=1.\)
Vậy GTNN của biểu thức là 8.
\(\sqrt{\dfrac{x^2+2x+1}{16x^2}}=\sqrt{\dfrac{\left(x+1\right)^2}{16x^2}}=\dfrac{\left|x+1\right|}{4\left|x\right|}=\dfrac{1-x}{-4x}=\dfrac{x-1}{4x}\left(do.x\le-1\right)\)