số nhỏ nhất khi chia cho ; 2 ; 3 ; 4 ; 5 ;6 lần lượt có số dư bằng 1 ; 2 ; 3 ; 4 ; 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b.Gọi số cần tìm là a.
Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3
a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5 và a là nhỏ nhất
a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7
\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).
\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.
\(\Rightarrow\) a + 2 = 105
\(\Rightarrow\) a = 103
Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.
1) Chia cho 8 dư 6 là 190;chia 12 dư 10 là 286;chia 15 dư 13 là 358 . 2)Số tự nhiên nhỏ nhất khi chia cho 3;4;5 có số dư theo thứ tự 1;3;1 là 4;7;6. Mình ko chắc đâu nha!!!
câu 1 sai đề đúng ko bạn
phải là cái này mới đúng :1)tìm số tự nhiên nhỏ nhất khi chia cho 8 dư 6;chia 12 dư 10;chia 15 dư 16 và chia hết cho 23
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Gọi số cần tìm là \(x,\)ta có :
\(x\): 21 dư 15
\(\Rightarrow\)\(x\)= 21n + 15 (n\(\in\)N)
\(\Rightarrow\)\(2x\)= 42n + 30 = 42n + 30 = 42n + 29 + 1 : 29 dư 1
\(x\): 14 dư 8
\(\Rightarrow\)\(x\)= 14m + 8 (m \(\in\)N)
\(\Rightarrow\)\(2x\)= 28m + 16 = 28m + 15 + 1 : 15 dư 1
\(x\): 35 dư 29
\(\Rightarrow\)\(x\)= 35p + 29 (p \(\in\)N)
\(\Rightarrow\)\(2x\)= 70p + 58 = 70p + 57 + 1 : 57 dư 1
\(\Rightarrow\)\(x-1\)\(⋮\)29, 15, 57
Mà \(x\)là số tự nhiên nhỏ nhất \(\Rightarrow\)\(x-1\in BCNN\left(29,15,57\right)\)
29 = 29
15 = 3.5
57 = 3.19
\(x-1\in BCNN\left(29,15,57\right)=29.3.5.19=8265\)
\(\Rightarrow\) \(x=8265+1=8266\)
số đó chia cho 39 dc số du là 14 nên số đó có dạng 39.k+14 (k thuộc N là số tự nhiên)
39.k+14=37.k+2.k+14 chia cho 37 dư 1
ta có 37.k chia hết cho 37 => (2.k +14) là số nhỏ nhất chia cho 37 dư 1 (với k là số tự nhiên)
trường hợp 1: 2.k+14=1 (1 là nhỏ nhất chia cho 37 dư 1) (loại vì 2.k+14 >1 với k là số tự nhiên )
trường hợp 2: 2.k+14=38 là số tiếp theo nhỏ nhất chia cho 37 dư 1
2.k+14=38
2.k=38-14=24
k=24:2=12 =>số cần tìm là: 39.k+14=39.12+14=482
Theo đề bài ta có :
â : 37 dự 1 => 3a : 37 dư 3
a : 39 dư 14 => 3a : 39 dư 3
=> 3a + 3 chia hết cho 37 và 39
=> 3a + 3 thuộc BCNN(37 ; 39)
Ta có :
BCNN(37 ; 39) = 1443
=> 3a + 3 = 1443
=> 3a = 1440
=> a = 480