Cho tứ giác ABCD biết : A:B:C:D=1:2:3:4
a) Tính các góc của tứ giác
b) Chứng minh AB//CD
c) AD cắt BC tại E. Tính các góc của tam giác EDC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}=\dfrac{360^0}{10}=36^0\)
Do đó: \(\widehat{A}=36^0;\widehat{B}=72^0;\widehat{C}=108^0;\widehat{D}=144^0\)
b: ta có: \(\widehat{B}+\widehat{C}=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
a) Vì A: B:C:D = 1:2:3:4
=> A= B/2 = C/3=D/4
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
A = 36 độ
B= 72 độ
C=108 độ
D= 144 độ
b) Ta có :
A + D = 36 + 144 = 180 độ(1)
B+C = 72 + 108 = 180 độ(2)
Từ (1) và (2) ta có:
=> AB //CD (dpcm)
c) Ta có :
CDE + ADC = 180 độ(kề bù)
=> CDE = 180 - 144 = 36
Ta có :
BCD + DCE = 180 độ ( kề bù)
=> DCE = 180 - 108 = 72
Xét ∆CDE ta có :
CDE + DCE + DEC = 180 ( tổng 3 góc trong ∆)
=> DEC = 180 - 72 - 36 = 72 độ
a)Từ A:B:C:D=1:2:3:4
=>\(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{D}{4}\) và A+B+C+D=3600
Áp dụng tính chất dãy tiwr số bằng nhau ta có:
\(\frac{A}{1}=\frac{B}{2}=\frac{C}{3}=\frac{D}{4}=\frac{A+B+C+D}{1+2+3+4}=\frac{360}{10}=36\)
=>A=36.1=360
B=36.2=720
C=36.3=1080
D=36.4=1440
=>A+D=360+1440=1800
Do A và D là 2 góc trong cùng phía =>AB//CD=>ABCD là hình thang
Ta có:CDE+CDA=1800=>1440+CDE=1800=>CDE=360
DCE+BCD=1800=>DCE+1080=1800=>DCE=720
Do CDE+DCE+DEC=1800
=>360+720+DEC=1800
=>DEC=720
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}=\dfrac{d}{4}=\dfrac{a+b+c+d}{1+2+3+4}=\dfrac{360}{10}=36\)
Do đó: a=36; b=72; c=108; d=144
Vì a+d=180
nên ABCD là hình thang
b: góc EDC=180-144=36 độ
góc ECD=180-108=72 độ
góc E=180-36-72=72 độ
a. Gọi số đo các góc của tứ giác ABCD lần lượt là: `x,2x,3x,4x (x>0)`
Có: `x+2x+3x+4x=360^o` (Tổng 4 góc của 1 tứ giác)
`<=> x=36^o`
`=> \hatA=36^o`
`\hatB=72^o`
`\hatC=108^o`
`\hatD=144^o`
b.
`\hatA+\hatD=180^o`
Mà 2 góc ở vị trí trong cùng phía.
`=> AB ////DC`
a) Tổng các góc của tứ giác là \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
Ta có: \(\widehat{A}:\widehat{B}:\widehat{C}:\widehat{D}=1:2:3:4\)
\(\Rightarrow\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{3}=\dfrac{\widehat{D}}{4}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{1+2+3+4}=\dfrac{360^o}{10}=36^o\)
\(\Rightarrow\widehat{A}=36^o.1=36^o\)
\(\Rightarrow\widehat{B}=36^o.2=72^o\)
\(\Rightarrow\widehat{C}=36^o.3=108^o\)
\(\Rightarrow\widehat{D}=36^o.4=144^o\)
b) Tứ giác ABCD có:
\(\widehat{A}+\widehat{D}=36^o+144^o=180^o\)
Mà \(\widehat{A}\)và \(\widehat{D}\)là hai góc trong cùng phía
VậyAB//CD
Bài 1)
a) Vì A: B:C:D = 1:2:3:4
=> A= B/2 = C/3=D/4
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
A = 36 độ
B= 72 độ
C=108 độ
D= 144 độ
b) Ta có :
A + D = 36 + 144 = 180 độ(1)
B+C = 72 + 108 = 180 độ(2)
Từ (1) và (2) ta có:
=> AB //CD (dpcm)
c) Ta có :
CDE + ADC = 180 độ(kề bù)
=> CDE = 180 - 144 = 36
Ta có :
BCD + DCE = 180 độ ( kề bù)
=> DCE = 180 - 108 = 72
Xét ∆CDE ta có :
CDE + DCE + DEC = 180 ( tổng 3 góc trong ∆)
=> DEC = 180 - 72 - 36 = 72 độ
Bài 2)
a) Ta có ABCD có :
A + B + C + D = 360 độ
Mà C = 80 độ
D= 70 độ
=> A+ B = 360 - 80 - 70 = 210 độ
Ta có AI là pg góc A
BI là pg góc B
=> DAI = BAI = A/2
=> ABI = CBI = B/2
=> BAI + ABI = A + B /2
=> BAI + ABI = 210/2 = 105
Xét ∆IAB ta có :
IAB + ABI + AIB = 180 độ
=> AIB = 180 - 105
=> AIB = 75 độ
=>
Câu 1:
a,Tứ giác ABCD có ˆA+ˆB+ˆC+ˆD=360oA^+B^+C^+D^=360o(định lí)
mà ˆAA^:ˆBB^:ˆCC^:ˆDD^=1:2:3:4
=> ˆA1=ˆB2=ˆC3=ˆD4A^1=B^2=C^3=D^4=ˆA+ˆB+ˆC+ˆD1+2+3+4=A^+B^+C^+D^1+2+3+4=360o10=360o10=36o36o
=>ˆAA^=36o36o;ˆBB^=72o72o;ˆCC^=108o108o;ˆDD^=144o144o
b, Có ˆAA^+ˆDD^=36o36o+144o144o
=180o180o
mà 2 góc này ở vị trí slt
=>AB//CD