Tìm 2 số tự nhiên a và b biết :
a + b = 117 và ƯCLN(a, b) = 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Gọi c, d là thương của a, b khi chia cho 13. Ta có:
13c+13d=117 <=> 13(c+d)=117 => c+d=9. Có các TH:
+/ \(\hept{\begin{cases}c=1\\d=8\end{cases}}=>\hept{\begin{cases}a=13.1=13\\b=13.8=104\end{cases}}\)
+/ \(\hept{\begin{cases}c=2\\d=7\end{cases}}=>\hept{\begin{cases}a=13.2=26\\b=13.7=91\end{cases}}\)
+/ \(\hept{\begin{cases}c=3\\d=6\end{cases}}=>\hept{\begin{cases}a=13.3=39\\b=13.6=78\end{cases}}\)loại do 78 chia hết cho 39
+/ \(\hept{\begin{cases}c=4\\d=5\end{cases}}=>\hept{\begin{cases}a=13.4=52\\b=13.5=65\end{cases}}\)
ĐS: {a, b}={13,104}; {26,91}; {52;65}
Bài 2 làm tương tự
Bài 1:
Ta có ab=ƯCLN (a,b). BCNN (a,b)
=>ƯCLN (a,b)=ab:BCNN (a,b)
=>ƯCLN (a,b)=2940:210=14
Ta có: a=14. a' và b=14.b'
Ta có: a.b=2940
Thay số vào, ta có: a.b=14.a'.14.b'=(14.14).a'.b'=2940
=>a'.b'=2940:(14.14)=15 và ƯCLN (a',b')=1
Ta có:
a' | 1 | 3 | 5 | 15 |
b' | 15 | 5 | 3 | 1 |
=>
a | 14 | 42 | 70 | 210 |
b | 210 | 70 | 42 | 14 |
Vậy các cặp số a,b cần tìm là:14 và 210;42 và 70;70 và 42;210 và 14.
2 bài còn lại làm tương tự !
vì ƯCLN(a,b)=6 (a<b)
a=6m
b=6n
với (m,n)=1,m\(\le\)n
a+b=6m+6n=6(m+n)=84
=>m+n=14
m=1 ,n=13,=>a=6,b=78
m=3,n=11,=>a=18,b=66
m=5,n=9,=>a=30,b=54
m=7,n=7,a=42,b=42
bài còn lại cũng tương tự
1.
\(ƯCLN\left(a,b\right)=7\)
\(\Rightarrow a,b\)chia hết cho 7
\(\Rightarrow a,b\in B\left(7\right)\)
\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)
a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)
\(\Rightarrow a=56;b=0.a=0;b=56\)
\(a=7;b=49.a=49;b=7\)
\(a=14;b=42.a=42;b=14\)
\(a=21;b=35.a=35;b=21\)
\(a=b=28\)
b, a.b=490 \(\Rightarrow a< 490;b< 490\)
\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)
\(a=14;b=35-a=35;b=14\)
c, BCNN (a,b) = 735
\(\Rightarrow a,b\inƯ\left(735\right)\)
\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)
\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)
2.
a+b=27\(\Rightarrow\)\(a\le27;b\le27\)
ƯCLN(a,b)=3
\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)
BCNN(a,b)=60
\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)
\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)