Biểu thức A=\(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3...+2014}\)=................
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ở mẫu n4+n2+1=(n2+n+1)(n2-n+1)
\(\frac{2n}{n^4+n^2+1}=\frac{\left(n^2+n+1\right)-\left(n^2-2+1\right)}{\left(n^2-n+1\right)\left(n^2+n+1\right)}\)
Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014
Ta có : \(1+2=\frac{2.3}{2}\) , \(1+2+3=\frac{3.4}{2}\) ,
\(1+2+3+4=\frac{4.5}{2}\) , ......... , \(1+2+3+4+....+2014=\frac{2014.2015}{2}\)
Suy ra : \(A=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2014.2015}\)
\(=2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2014.2015}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(2\left(\frac{1}{2}-\frac{1}{2015}\right)\)
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2014}\)
\(A=\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+...+\frac{1}{\left(1+2014\right).2014:2}\)
\(A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2014.2015}\)
\(A=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2014.2015}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{2014}-\frac{1}{2015}\right)\)
\(A=2.\left(\frac{1}{2}-\frac{1}{2015}\right)\)
\(A=2.\frac{1}{2}-2.\frac{1}{2015}\)
\(A=1-\frac{2}{2015}\)
\(A=\frac{2013}{2015}\)
Nguyễn Văn A nhầm bài òi đấy