K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2015

Không có:)) Mình nghĩ vậy!

31 tháng 3 2019

Có n=5

18 tháng 11 2016

Dễ thấy: 2010 chia 4 dư 2

n2 là số chính phương nên chia 4 chỉ có thể dư 0 hoặc 1

=> 2010 + n2 chia 4 chỉ có thể dư 2 hoặc 3, không là số chính phương

Vậy không tồn tại số tự nhiên n thỏa mãn đề bài

10 tháng 11 2023

Dễ thấy: 2010 chia 4 dư 2

n2 là số chính phương nên chia 4 chỉ có thể dư 0 hoặc 1

=> 2010 + n2 chia 4 chỉ có thể dư 2 hoặc 3, không là số chính phương

Vậy không tồn tại số tự nhiên n thỏa mãn đề bài

23 tháng 3 2015

ta có: n2 là số chính phương 

=> n2 chia 4 dư 1 hoặc 0

nếu n2 chia 4 dư 0 => 2002+n2 chia 4 dư 2

=> 2002+n2 ko phải scp

nếu n2 chia 4 dư 1=> 2002+n2 chia 4 dư 3

=> 2002+nko phải scp

vậy ko tồn tại n số tự nhiên n để 2002+n2 là scp

15 tháng 12 2017

ta có: n
2
là số chính phương
=> n
2 chia 4 dư 1 hoặc 0
nếu n
2 chia 4 dư 0 => 2002+n
2 chia 4 dư 2
=> 2002+n
2 ko phải scp
nếu n
2 chia 4 dư 1=> 2002+n
2 chia 4 dư 3
=> 2002+n
2 ko phải scp
vậy ko tồn tại n số tự nhiên n để 2002+n
2
là scp

chúc bn hok tốt @_@

8 tháng 2 2019

ko vì 

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

8 tháng 2 2019

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

NV
5 tháng 1

Đặt \(n^2-3n=m^2\) với \(m\in N\)

\(\Rightarrow4n^2-12n=4m^2\)

\(\Rightarrow4n^2-12n+9=4m^2+9\)

\(\Rightarrow\left(2n-3\right)^2-\left(2m\right)^2=9\)

\(\Rightarrow\left(2n-3-2m\right)\left(2n-3+2m\right)=9\)

2n-3-2m-9-3-1139
2n-3+2m-1-3-9931
n-10-1434
m20-220-2

Vậy \(n=\left\{0;3;4\right\}\) là các giá trị thỏa mãn

11 tháng 4 2017

1) ta có A = n^2+n+1 = n^2+n+n-n-1 = n(n+1)+1(n+1)+1(n+1) = (n+1)(n+1)+1 = (n+1)^2 +1

(n+1)^2+1=0

=> n+1=1                                                       =>n+1=-1

                    

=>n=0                                                           =>n=-2(loại)

vậy n=0

AH
Akai Haruma
Giáo viên
5 tháng 11 2023

Lời giải:

Ta thấy 1 scp khi chia 4 luôn có dư là $0$ hoặc $1$

$\Rightarrow n^2\equiv 0,1 \pmod 4$

Mà $1990\equiv 2\pmod 4$

$\Rightarrow 1990+n^2\equiv 2, 3\pmod 4$

$\Rightarrow 1990+n^2$ không thể là số chính phương với mọi số tự nhiên $n$.

17 tháng 11 2015

Tham khảo câu hỏi tương tự nhé bạn .

Tick tớ đc chứ