Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sinx+cosx=m\Leftrightarrow\left(sinx+cosx\right)^2=m^2\)
\(\Leftrightarrow1+2sinx.cosx=m^2\Rightarrow sinx.cosx=\dfrac{m^2-1}{2}\)
\(A=sin^2x+cos^2x=1\)
\(B=sin^3x+cos^3x=\left(sinx+cosx\right)^3-3sinx.cosx\left(sinx+cosx\right)\)
\(=m^3-\dfrac{3m\left(m^2-1\right)}{2}=\dfrac{2m^3-3m^3+3m}{2}=\dfrac{3m-m^3}{2}\)
\(C=\left(sin^2+cos^2x\right)^2-2\left(sinx.cosx\right)^2=1-2\left(\dfrac{m^2-1}{2}\right)^2\)
\(D=\left(sin^2x\right)^3+\left(cos^2x\right)^3=\left(sin^2x+cos^2x\right)^3-3\left(sin^2x+cos^2x\right)\left(sinx.cosx\right)^2\)
\(=1-3\left(\dfrac{m^2-1}{2}\right)^2\)
b.
\(\Leftrightarrow2sin^2x+4sinx=3\left(1-sin^2x\right)\)
\(\Leftrightarrow5sin^2x+4sinx-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{-2-\sqrt{19}}{5}\left(l\right)\\sinx=\frac{-2+\sqrt{19}}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{-2+\sqrt{19}}{5}\right)+k2\pi\\x=\pi-arcsin\left(\frac{-2+\sqrt{19}}{5}\right)+k2\pi\end{matrix}\right.\)
c.
\(\Leftrightarrow sinx\left(sin^2x+3sinx+2\right)=0\)
\(\Leftrightarrow sinx\left(sinx+1\right)\left(sinx+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
a.
\(1-cos^22x-\left(\frac{1-cos2x}{2}\right)=\frac{1}{2}\)
\(\Leftrightarrow2cos^22x-cos2x=0\)
\(\Leftrightarrow cos2x\left(2cos2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=\frac{1}{2}\\\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\2x=\frac{\pi}{3}+k2\pi\\2x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\frac{\pi}{6}+k\pi\\x=-\frac{\pi}{6}+k\pi\end{matrix}\right.\)
a/ \(\Leftrightarrow2cosx.cos2x=cos2x\)
\(\Leftrightarrow2cosx.cos2x-cos2x=0\)
\(\Leftrightarrow cos2x\left(2cosx-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cos2x=0\\cosx=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
b/ \(\Leftrightarrow2sinx.sin2x=sinx\)
\(\Leftrightarrow2sinx.sin2x-sinx=0\)
\(\Leftrightarrow sinx\left(2sin2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=0\\sin2x=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\2x=\frac{\pi}{6}+k2\pi\\2x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)
c/ \(\Leftrightarrow sin3x-sinx+sin4x-sin2x=0\)
\(\Leftrightarrow2cos2x.sinx+2cos3x.sinx=0\)
\(\Leftrightarrow sinx\left(cos2x+cos3x\right)=0\)
\(\Leftrightarrow2sinx.2cos\frac{5x}{2}.cos\frac{x}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}sinx=0\\cos\frac{5x}{2}=0\\cos\frac{x}{2}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\\frac{5x}{2}=\frac{\pi}{2}+k2\pi\\\frac{x}{2}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{5}+\frac{k4\pi}{5}\\x=\pi+k4\pi\end{matrix}\right.\)
d/ \(\Leftrightarrow sin3x-sinx-\left(sin4x-sin2x\right)=0\)
\(\Leftrightarrow2cos2x.sinx-2cos3x.sinx=0\)
\(\Leftrightarrow sinx\left(cos2x-cos3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos2x=cos3x\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\2x=3x+k2\pi\\2x=-3x+k2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{k2\pi}{5}\end{matrix}\right.\)
a. ĐKXĐ: ...
\(\frac{sinx}{cosx}+\frac{sin2x}{cos2x}+\frac{sin3x}{cos3x}=0\)
\(\Leftrightarrow\frac{sin2x.cosx+cos2x.sinx}{cosx.cos2x}+\frac{sin3x}{cos3x}=0\)
\(\Leftrightarrow\frac{sin3x}{cosx.cos2x}+\frac{sin3x}{cos3x}=0\)
\(\Leftrightarrow sin3x\left(\frac{cosx.cos2x+cos3x}{cosx.cos2x.cos3x}\right)=0\)
\(\Leftrightarrow sin3x\left(\frac{cosx\left(2cos^2x-1\right)+4cos^3x-3cosx}{cosx.cos2x.cos3x}\right)=0\)
\(\Leftrightarrow sin3x\left(\frac{6cos^2x-4}{cos2x.cos3x}\right)=0\)
\(\Leftrightarrow sin3x\left(\frac{3cos2x-1}{cos2x.cos3x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin3x=0\\cos2x=\frac{1}{3}\end{matrix}\right.\)
b.
\(cos2x\left(2cos^22x-1\right)=\frac{1}{2}\)
\(\Leftrightarrow4cos^32x-2cos2x-1=0\)
Pt bậc 3 này ko giải được, chắc bạn ghi nhầm đề
c. ĐKXĐ: ...
\(\frac{cosx}{sinx}-\frac{sinx}{cosx}=cosx-sinx\)
\(\Leftrightarrow\frac{\left(cosx-sinx\right)\left(cosx+sinx\right)}{sinx.cosx}=cosx-sinx\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx-sinx=0\Rightarrow x=...\\\frac{cosx+sinx}{sinx.cosx}=1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow cosx+sinx=sinx.cosx\)
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Rightarrow t=\frac{t^2-1}{2}\Rightarrow t^2-2t-1=0\Rightarrow\left[{}\begin{matrix}t=1+\sqrt{2}\left(l\right)\\t=1-\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1-\sqrt{2}\Rightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{1-\sqrt{2}}{\sqrt{2}}\Rightarrow x=...\)