Cho tam giác ABC có góc B = góc C . Tia phân giác của góc A cắt BC tại D. Chứng minh rằng :
a) Tam giác ADB= Tam giác ADC
b) AB= AC
Vẽ hình và giải
Làm giúp mình vs mình kiếm kh ra đc mấy bài tương tự
VẼ HÌNH NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB và ΔADC có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔADB=ΔADC
a: Xét ΔABD và ΔACD có
AB=AC
góc BAD=goc CAD
AD chung
=>ΔABD=ΔACD
b: ΔABD=ΔACD
=>BD=CD
c: ΔACB cân tại A
mà ADlà trung tuyến
nên AD vuông góc BC
b ) GÓC B = GÓC C
=> TAM GIÁC ABC CÂN TẠI A
=> AB = AC (ĐPCM)
a) XÉT 2 TAM GIÁC ADB VÀ ADC, CÓ:
AB = AC (THEO CÂU B)
AD LÀ CẠNH CHUNG
GÓC A1 = GÓC A2 (AD LÀ PHÂN GIÁC, GT)
=> TAM GIÁC ADB = ADC (C.G.C) (ĐPCM)
a) Xét tam giác adb và tam giác adc
ab = ac
góc a1 và góc a2 là cạnh chung
Suy ra tam giác adb = tam giác adc
b) Vì tam giác adb = tam giác adc
Nên AB = AC
b, vì tam giác ABC có góc B =góc C => tam giác ABC là tam giác cân ( T/C tam giác cân )
do đó AB =AC
a, xét tam giác ABD và tam giác ACD có :
AB = AC ( CMT )
GÓC BAD = GÓC CAD ( VÌ AD LÀ PHÂN GIÁC CỦA GÓC A )
AD CHUNG
DO ĐÓ TAM GIÁC ABD = TAM GIÁC ACD ( C-G-C )
a) vì góc B = góc C ( gt )
góc BAD = góc DAC ( p/g góc A )
=> 180o - ( góc B + góc BAD ) = 180o - ( góc C + góc DAC )
=> góc ADB = góc ADC
xét \(\Delta ADB\) và \(\Delta ADC\)có :
g : BÂD = DÂC ( AD là tia p/g góc A )
c : AD là cạnh chung
g : ADB = ADC ( cmt )
=> \(\Delta ADB=\Delta ADC\)( g - c - g ) ( đpcm )
b) Vì \(\Delta ADB=\Delta ADC\) => AB=AC ( 2 cạnh tương ứng ) ( đpcm )
Tam giác ACD và tam giác ABD có :
Góc B = góc C ( gt )
AD là cạnh chung
Góc A1 = Góc A2 ( AD là tia phân giác của tam giác ABC )
=> tam giác ACD = tam giác ABD
b) Tam giác ABC cân tại A ( góc B = góc C )
=> AB = AC
- SKT_Twisted Fate Âm Phủ
- Sai rồi
- giả thiết cho góc A = góc B chứ đâu cho Góc B = goc C
- Sai rùi
Câu hỏi tương tự có đó bạn!
bạn tham khảo câu hỏi tương tự nhé .