Tìm x,y biết \(\frac{x+4}{7+y}=\frac{4}{7};x+y=22\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:7(x+4)=4(y+7)
<=> 7x+28=4y+28
<=> 7x=4y
=> x/y=4/7
vậy:x=[22/(4+7)]*4=8
y=22-8=14
chắc đúng rùi đó e
Ta có (x + 4)/(7 + y) = 4/7
=> 7(x + 4) = 4(7 + y)
=> 7x + 28 = 28 + 4y
=> 7x = 4y
=> x/4 = y/7 => x/4 = y/7 = (x + y)/(4 + 7) = 22/11 = 2
=> x = 2.4 = 8; y = 2.7 = 14
1) \(\frac{x+4}{7+y}=\frac{4}{7}\)\(\Rightarrow7\left(x+4\right)=4\left(7+y\right)\)
\(\Rightarrow7x+28=28+4y\)
\(\Rightarrow7x=4y\)
\(\Rightarrow\frac{x}{4}=\frac{y}{7}\)
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{22}{11}=2\)
x/4 = 2 => x = 4 x 2 = 8
y/7 = 2 => y = 2 x 7 = 14
(x+4)/(7+y)=4/7 =>7x+28=28+4y
=>7x=4y(trừ 2 vế cho 28)
=>x/4=y/7
Áp dụng t/c DTSBN......................
Tiếp bài làm của ''Cánh Diều Tuổi Thơ''
\(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{22}{11}=2\)
*\(\frac{x}{4}=2\Rightarrow x=8\)
*\(\frac{y}{7}=2\Rightarrow y=14\)
Vậy x = 8 ; y = 14
a, \(\frac{x}{4}=\frac{y}{5}\) và x + y = 4
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{5}=\frac{x+y}{4+5}=\frac{4}{9}\)
=> \(\hept{\begin{cases}\frac{x}{4}=\frac{4}{9}\\\frac{y}{5}=\frac{4}{9}\end{cases}}\Rightarrow\hept{\begin{cases}9x=16\\9y=20\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{16}{9}\\y=\frac{20}{9}\end{cases}}\)
b, \(\frac{x}{6}=\frac{y}{3}\) và x - 2y = 5
Ta có : \(\frac{x}{6}=\frac{y}{3}\)=> \(\frac{x}{6}=\frac{2y}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{2y}{6}=\frac{x-2y}{6-6}=\frac{5}{0}\) vô lý
c, \(\frac{x}{3}=\frac{y}{7}\) và x - 5y = 4
Ta có : \(\frac{x}{3}=\frac{y}{7}\)=> \(\frac{x}{3}=\frac{5y}{35}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{5y}{35}=\frac{x-5y}{3-35}=\frac{4}{-32}=\frac{-4}{32}=\frac{-1}{8}\)
=> \(\hept{\begin{cases}\frac{x}{3}=\frac{-1}{8}\\\frac{y}{7}=\frac{-1}{8}\end{cases}\Rightarrow}\hept{\begin{cases}8x=-3\\8y=-7\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{3}{8}\\x=-\frac{7}{8}\end{cases}}\)
d, Tương tự áp dụng như bài a,c
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}\)và \(x.y=48\)
Ta đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{7}\Leftrightarrow\frac{x^2}{3}=\frac{x.y}{4}=\frac{z.x}{7}\)
\(\frac{x^2}{3}=\frac{48}{4}=\frac{z.x}{7}\Leftrightarrow\frac{x^2}{3}=\frac{x.y}{4}=\frac{z.x}{7}=12\)
\(x=\sqrt{12.3}=6\)
\(y=\frac{12.4}{6}=8\)
\(z=\frac{12.7}{6}=14\)
Vậy: \(\hept{\begin{cases}x=6\\y=8\\z=14\end{cases}}\)
xét x/3 = y/4
theo dãy tỉ số = nhau ta đc
x/3 = y/4 = xy/3.4 = xy/12 = 48/12 = 4
x=12
y=16
z=28
mik nha chế
\(\frac{x+4}{7+y}=\frac{4}{7}\)
\(\Rightarrow\) 7 ( x + 4 ) = 4 ( 7 + y )
\(\Rightarrow\) 7x + 28 = 28 + 4y
\(\Rightarrow\) 7x = 4y
\(\Rightarrow\) \(\frac{x}{4}=\frac{y}{7}=\frac{x+y}{4+7}=\frac{22}{11}=2\)
\(\Rightarrow\) \(\frac{x}{4}=2\) \(\Rightarrow\) \(x=8\)
\(\Rightarrow\)\(\frac{y}{7}=2\) \(\Rightarrow\) \(y=14\)
Vậy x = 8; y = 14
theo tao
thì x=8
y=14