Tìm các ƯC(2n+1;3n+1) với n thuộc N*
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN của 2n + 1 và n + 1
\(\Rightarrow\)2n + 1 \(⋮\)d và n + 1\(⋮\)d
\(\Rightarrow\)( 2n + 1 ) - ( n + 1 )\(⋮\)d
\(\Rightarrow\)( 2n + 1 ) -
Goi UC(2n+1;3n+1)=d
Ta co:+/2n+1 chia het cho d=>3(2n+1) chia het cho d
Hay 6n+3 chia het cho d(1)
3n+1 chia het cho d=>2(3n+1) chia het cho d
Hay 6n+2 chia het cho d(2)
Tu (1) va (2) =>(6n+3-6n-2) chia het cho d
=>1 chia het cho d
=>d la uoc cua 1
=>d thuoc tap hop 1;-1
=>tap hop uoc chung cua 2n+1 va 3n+1 la -1;1
b) Gọi d là ước chung của 2n và 2n + 2.
Suy ra \(\hept{\begin{cases}2n⋮d\\2n+2⋮d\end{cases}}\).
Vì vậy \(2n+2-2n⋮d\) hay \(2⋮d\).
Vậy d = { 1; 2}.
Giải :
a ) Ta có :
\(51=3.17\)
\(76=2^2.19\)
\(\RightarrowƯC\left(51;76\right)=1\)
b ) Gọi \(Ư\left(2n,2n+2\right)=d\)
\(\Rightarrow\hept{\begin{cases}2n⋮7\\2n+2⋮7\end{cases}\Rightarrow\left(2n+2\right)-2n⋮d\Rightarrow2⋮d}\)hay \(d\inƯ\left(2\right)\)
Ta có : \(Ư\left(2\right)=\left\{1;2\right\}\)
Vậy \(ƯC\left(2n,2n+2\right)=\left\{1;2\right\}\)
gọi ƯC ( n+1; 2n+1) là d nên n+1 chia hết cho d và2n+ 1 chia hết cho d. suy ra 2(n+1)=2n+2 chia hết cho d, suy ra
( 2n+2)-(2n+1)=2n+2-2n-1=1 chia hết cho d nên d=1( vì n thuộc N). vậy d=1
Sửa lại một chút cho dễ xem nhé!
G/s: \(d\inƯC\left(n+1;2n+1\right)\)
=> \(\hept{\begin{cases}n+1⋮d\\2n+1⋮d\end{cases}}\)
=> \(\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+1⋮d\end{cases}}\)
=> \(2\left(n+1\right)-\left(2n+1\right)⋮d\)
=> \(2n+2-2n-1⋮d\)
=> \(1⋮d\)
=> \(d=1\)
Vậy 1 là ƯC ( n+1; 2n +1)
Gọi ƯC(n + 3; 2n + 5) = d
=> n + 3 ⋮ d => 2(n + 3) ⋮ d hay 2n + 6 ⋮ d (1)
=> 2n + 5 ⋮ d (2)
Từ (1) và (2) => ( 2n + 6 ) - ( 2n + 5 ) ⋮ d
<=> 2n + 6 - 2n - 5 ⋮ d
<=> 1 ⋮ d
=> d thuộc Ư(1) = 1
=> d = 1
=> ƯC(n + 3; 2n + 5) = 1
thiếu cái = 1 ở cuối nữa nhé
Gọi d là ƯC(2n+1;3n+1) (d thuộc N*)
=>2n+1 chia hết cho d=>6n+3 chia hết cho d
=>3n+1 chia hết cho d=>6n+2 chia hết cho d
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>ƯC(2n+1;3n+1)=Ư(1)={1}