giải giúp mình 2 bài này với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi
\(R_{tđ}=\dfrac{R_1\cdot R_2}{R_1+R_2}=\dfrac{24\cdot12}{24+12}=8\Omega\)
\(I=\dfrac{U}{R}=\dfrac{12}{8}=1,5A\)
\(P=\dfrac{U^2}{R}=\dfrac{12^2}{8}=18W\)
\(Q_{tỏa1}=A_1=U_1\cdot I_1\cdot t=12\cdot\dfrac{12}{24}\cdot1\cdot3600=21600J\)
\(Q_{tỏa2}=A_2=U_2\cdot I_2\cdot t=12\cdot\dfrac{12}{12}\cdot1\cdot3600=43200J\)
2:
1+cot^2a=1/sin^2a
=>1/sin^2a=1681/81
=>sin^2a=81/1681
=>sin a=9/41
=>cosa=40/41
tan a=1:40/9=9/40
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)
Ta lấy vễ trên chia vế dưới
\(=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)
Ta lấy vế trên chia vế dưới
\(=2^3.3=24\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)
\(3,\\ a,P=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\left(x>0;x\ne1;x\ne4\right)\\ P=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{x-1-x+4}\\ P=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\\ b,P=\dfrac{1}{4}\Leftrightarrow\dfrac{\sqrt{x}-2}{3\sqrt{x}}=\dfrac{1}{4}\Leftrightarrow4\sqrt{x}-8=3\sqrt{x}\\ \Leftrightarrow\sqrt{x}=8\Leftrightarrow x=64\)
\(c,x=4+2\sqrt{3}\Leftrightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\\ \Leftrightarrow P=\dfrac{\sqrt{3}+1-2}{3\left(\sqrt{3}+1\right)}=\dfrac{\sqrt{3}-1}{3\sqrt{3}+3}=\dfrac{\left(\sqrt{3}-1\right)\left(3\sqrt{3}-3\right)}{18}\\ P=\dfrac{12-6\sqrt{3}}{18}=\dfrac{2-\sqrt{3}}{3}\)
\(d,P\in Z\Leftrightarrow3P\in Z\Leftrightarrow\dfrac{3\sqrt{x}-6}{3\sqrt{x}}\in Z\Leftrightarrow1-\dfrac{6}{3\sqrt{x}}\in Z\\ \Leftrightarrow6⋮3\sqrt{x}\Leftrightarrow3\sqrt{x}\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{1;2;3;6\right\}\left(\sqrt{x}\ge0\right)\\ \Leftrightarrow x\in\left\{1;4;9;36\right\}\)
\(4,\\ A=\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\\ A=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\\ A=\left|x+1\right|+\left|x-1\right|\\ A=\left|x+1\right|+\left|1-x\right|\ge\left|x+1+1-x\right|=\left|2\right|=2\)
Dấu \("="\Leftrightarrow x=1\)