Tìm tất cả các số nguyên tố x ,y sao cho :
a, \(x^2-12.y^2=1\)
b,\(3.x^2+1=19.y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-y^2\right)^2=4xy+1\)
<=> \(\left(x^2+y^2\right)^2=4x^2y^2+4xy+1\)
<=> \(\left(x^2+y^2\right)^2=\left(2xy+1\right)^2\)
<=> \(x^2+y^2=2xy+1\)
<=> \(\left(x-y\right)^2=1\)
<=> \(\left[{}\begin{matrix}x=y+1\\x=y-1\end{matrix}\right.\) mà x,y là SNT <=> \(\left[{}\begin{matrix}\left(x;y\right)=\left(3;2\right)\\\left(x;y\right)=\left(2;3\right)\end{matrix}\right.\)
\(x^2-6y^2=1\)
\(+,y=2\Rightarrow x^2=4.6+1=25\Rightarrow x=5\left(\text{thỏa mãn}\right)\)
\(+,y>2\Rightarrow x>2\Rightarrow x;y\text{ lẻ }\Rightarrow x^2;y^2\text{ chia 4 dư 1}\Rightarrow1\text{ chia 4 dư:}1-2=-1\left(\text{vô lí}\right)\)
Vậy: x=5;y=2