cho a b c là độ dài 3 cạnh tam giác cmr: ab/(a+b-c) + bc/(b+c-a + ca/(c+a-b) > a+b+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a+b-c=x
b+c-a=y
c+a-b=z
\(A=\frac{ab}{a+b-c}+\frac{bc}{b+c-a}+\frac{ca}{c+a-b}\)
Ta có a;b;c là độ dài 3 cạnh tam giác nên x;y;z>0
\(4A=\frac{2a.2b}{x}+\frac{2b.2c}{y}+\frac{2c.2a}{z}\)
\(=\frac{\left(x+z\right)\left(x+y\right)}{x}+\frac{\left(x+y\right)\left(y+z\right)}{y}+\frac{\left(x+z\right)\left(y+z\right)}{z}\)
\(=3\left(x+y+z\right)+\left(\frac{yz}{x}+\frac{zx}{y}+\frac{xy}{z}\right)\)
\(\ge3\left(x+y+z\right)+\frac{\left(x+y+z\right)xyz}{xyz}\)\(=4\left(x+y+z\right)=4\left(a+b+c\right)\) (Do x;y;z>0)
\(\Rightarrow A\ge a+b+c\)
Đặt \(S=\frac{ab}{p-c}+\frac{bc}{p-a}+\frac{ca}{p-b}\)
Bất đẳng thức cần chứng minh tương đương với \(S=\frac{2ab}{a+b-c}+\frac{2bc}{b+c-a}+\frac{2ca}{c+a-b}\ge2\left(a+b+c\right)\)
Đặt \(a+b-c=x;b+c-a=y;c+a-b=z\)thì \(x+y+z=a+b+c;a=\frac{y+z}{2};b=\frac{z+x}{x};c=\frac{x+y}{2}\)
Ta cần chứng minh \(S=\text{∑}_{cyc}\frac{\left(y+z\right)\left(z+x\right)}{2z}\ge2\left(x+y+z\right)\)
Ta có:
\(S=\frac{\left(y+z\right)\left(z+x\right)}{2z}+\frac{\left(x+y\right)\left(y+z\right)}{2y}+\frac{\left(z+x\right)\left(x+y\right)}{2x}\)
\(=\frac{xy+yz+zx+z^2}{2z}+\frac{xy+zx+yz+y^2}{2y}+\frac{x^2+xy+zx+yz}{2x}\)
Đẳng thức xảy ra khi a = b = c
** Lần sau bạn lưu ý viết đề bằng công thức toán (hộp công thức nằm ở nút biểu tượng $\sum$ bên trái khung soạn thảo)
Lời giải:
a) Vì $a,b,c$ là độ dài 3 cạnh tam giác nên theo BĐT tam giác ta có:
$c< a+b\Rightarrow c^2< c(a+b)$
$b< a+c\Rightarrow b^2< b(a+c)$
$a<b+c\Rightarrow a^2< a(b+c)$
$\Rightarrow a^2+b^2+c^2< c(a+b)+b(a+c)+a(b+c)$
hay $a^2+b^2+c^2< 2(ab+bc+ac)$ (đpcm)
b)
Áp dụng BĐT Bunhiacopxky:
$\text{VT}[a(b+c-a)+b(a+c-b)+c(a+b-c)]\geq (a+b+c)^2$
$\text{VT}[2(ab+bc+ac)-(a^2+b^2+c^2)]\geq (a+b+c)^2$
$\Rightarrow \text{VT}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)-(a^2+b^2+c^2)}(*)$
Mà theo BĐT Cô-si:
$a^2+b^2+c^2\geq ab+bc+ac\Rightarrow a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}$. Do đó:
$2(ab+bc+ac)-(a^2+b^2+c^2)=(a+b+c)^2-2(a^2+b^2+c^2)$
$\leq (a+b+c)^2-2.\frac{(a+b+c)^2}{3}=\frac{(a+b+c)^2}{3}(**)$
Từ $(*); (**)\Rightarrow \text{VT}\geq 3$ (đpcm)
Dấu "=" xảy ra khi $x=y=z$
Lời giải khác của câu b
Đặt $b+c-a=x; a+c-b=y; a+b-c=z$. Theo BĐT tam giác thì $x,y,z>0$
$\Rightarrow c=\frac{x+y}{2}; a=\frac{y+z}{2}; b=\frac{x+z}{2}$
Bài toán trở thành:
Cho $x,y,z>0$. CMR $\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\geq 3$
Thật vậy:
Áp dụng BĐT Cô-si:
\(\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\geq 3\sqrt[3]{\frac{(x+y)(y+z)(x+z)}{8xyz}}\geq 3\sqrt[3]{\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}}{8xyz}}=3\)
Ta có đpcm
Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c$
Do a,b,c là 3 cạnh tam giác nên \(a+b-c>0;b+c-a>0;c+a-b>0\)
Đặt \(x=b+c-a>0\)
\(y=a+c-b>0\)
\(z=a+b-c>0\)
\(\Rightarrow a=\frac{"y+z"}{2}\)
\(\Rightarrow b=\frac{"x+z"}{2}\)
\(\Rightarrow c=\frac{"x+y"}{2}\)
\(A=\frac{a}{"b+c-a"}+\frac{b}{"a+c-b"}+\frac{c}{"a+b-c"}\)
\(=\frac{"y+z"}{"2x"}+\frac{"x+z"}{"2y"}+\frac{"x+y"}{"2z"}\)
\(=\frac{1}{2}."\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\)
Áp dụng công thức bdt Cauchy cho 2 số :
\(\frac{x}{y}+\frac{y}{x}\ge2\)
\(\frac{x}{z}+\frac{z}{x}\ge2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\)
Cộng 3 bdt trên, suy ra :
\("\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}"\ge6\)
\(\Rightarrow A\ge\frac{1}{2}.6=3\) "dpcm"
P/s: Nhớ thay thế dấu ngoặc kép thành dấu ngoặc đơn nhé