Cho tam giác ABC vuông tại A,đường cao AH.Lấy D đối xứng với H qua AB,E đối xứng với H qua AC, DH cắt AB tại M,HE cắt AC tại N.
a.đường thẳng BD vuông góc với AD
b.CM:BDEC là hình thang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AMHN có:
MÂN=AMH=ANH=90độ
=> AMHN là hình chữ nhật
b) Xét tam giác ANE và tam giác DME có
AN=DM(=MH)
NE=AM(=HN)
góc ANE = góc DMA (=90 độ)
Do đó tam giác ANE = tam giác DME (C-G-C)
=> góc ADM = NAE
Trong tam giác DMA vuông tại M có:
góc ADM +MAD=90
NAE + MAD=90
Ta có
DAE=DAM+MAN+NAE
DAE=90+DAM+NAE
DAE=90+90
DAE=180
Vậy D,A,E thẳng hàng
a: Ta có: H và D đối xứng nhau qua BA
nên AB là đường trung trực của HD
Suy ra: AB\(\perp\)HD và M là trung điểm của HD
Ta có: H và E đối xứng nhau qua AC
nên AC là đường trung trực của HE
Suy ra: AC\(\perp\)HE và N là trung điểm của HE
Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
Do đó: AMHN là hình chữ nhật
MK chỉ gợi ý thôi bạn tự triển khai nha! có gì không hiểu thì nhắn tin hỏi mk!
a, MHNA là hình chữ nhật vì có 3 góc \(\widehat{M};\widehat{N};\widehat{A} =90^o\)
b,nối DA và AE
Ta có:
AB là đường trung trực của DH ( tự cm) nên BD=BH và AD=AH
\(\Rightarrow \Delta BDA=\Delta BHA (c.c.c)\)
\(\Rightarrow \widehat{A_1}=\widehat{A_2}\) (1)
cm tương tự ta được \(\widehat{A_3}=\widehat{A_4}\) (2)
Từ (1) và (2) suy ra
\(\widehat{A_1}+\widehat{A_2}+\widehat{A_3}+\widehat{A_4}=2\widehat{A_2}+2\widehat{A_3}=2\left(\widehat{A_2}+\widehat{A_3}\right)\)
\(=2.90^o=180^o\)
\(\Rightarrow\widehat{DAE}=180^o\) suy ra D,A,E thẳng hàng
c, Từ 2 cặp tam giác bằng nhau đã cm ở câu b ta suy ra được
\(\widehat{BDA}=\widehat{BHA}=90^o\Rightarrow BD\perp DE\)
và \(\widehat{AEC}=\widehat{AHC}=90^o\Rightarrow EC\perp DE\)
Từ 2 cái trên suy ra BD//EC suy ra DBCE là hình thang
( đây là hình thang vuông nha!)
d, cũng từ 2 cặp tam giác bằng nhau ở câu b suy ra
AH=DA và AH=AE
suy ra AH+AH=AD+AE=DE
mà MHNA là HCN suy ra MN=AH
suy ra AH+AH=AH+MN
suy ra AH+MN=DE
a: Ta có: H và D đối xứng nhau qua AB
nên AB là đường trung trực của HD
=>AH=AD
=>ΔAHD cân tại A
mà AB là đường cao
nên AB là tia phân giác của góc HAD(1)
Ta có: H và E đối xứng nhau qua AC
nên AC là đường trung trực của HE
=>AH=AE
=>ΔAHE cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAE(2)
Xét tứ giác AMHN có \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)
nên AMHN là hình chữ nhật
b: Từ (1) và (2) suy ra \(\widehat{DAE}=\widehat{DAH}+\widehat{EAH}=2\cdot90^0=180^0\)
=>D,A,E thẳng hàng
c: Xét ΔAHB và ΔADB có
AH=AD
\(\widehat{HAB}=\widehat{DAB}\)
AB chung
Do đó: ΔAHB=ΔADB
Suy ra: \(\widehat{AHB}=\widehat{ADB}=90^0\)
=>BD\(\perp\)DE(3)
Xét ΔAHC và ΔAEC có
AH=AE
\(\widehat{HAC}=\widehat{EAC}\)
AC chung
Do đó: ΔAHC=ΔAEC
Suy ra: \(\widehat{AHC}=\widehat{AEC}=90^0\)
hay CE\(\perp\)ED(4)
Từ(3) và (4) suy ra BD//CE
hay BDCE là hình thang
d: DE=AD+AE=AH+MN
a: Ta có: E và H đối xứng nhau qua AB
nên AB là đường trung trực của EH
Suy ra: AB\(\perp\)EH tại M và M là trung điểm của EH
Ta có: H và F đối xứng nhau qua AC
nên AC là đường trung trực của HF
Suy ra: AC\(\perp\)HF tại N và N là trung điểm của FH
Xét tứ giác AMHN có
\(\widehat{MAN}=\widehat{ANH}=\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật
xin lỗi anh(chị) em mới lớp 6 không giải đc
thật lòng xin lỗi :(((((
((((((((🙄)))))))))___________bn ghi như mình đi thì bn sẽ có cái nịt 👉👈!!!