a) Cho p va p+2 la cac so nguyen to ( p > 3 ) . Chung minh rang p + 1 chia het cho 6
b) Cho p va p + 4 la cac so nguyen to ( p > 3 ) . Chung minh rang p + 8 la hop so
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
p<p+4 nguyen to => p<p+4 dang 3k +1
=>p+8 dang 3k+9
3k chia het cho 3
9 chia het cho 3
=> 3k +9 là hợp số =>p +8 là hợp số
xét p=3k+1=>p+2=3k+3=3(k+1) là hợp số (vô lí)
=>p=3k+2
=>p+1=3k+3=3(k+1) chia hết cho 3(1)
p là số lẻ=>p+1 là số chẵn=>p+1 chia hết cho 3(2)
từ (1);(2)=>p+1 chia hết cho 6
=>đpcm
< = > p + 1 chẵn
p chia 3 dư 2 thõa mãn p và p +2 là 2 số nguyên tố
=> p + 1 chia hết cho 3
Mà UCLN(2 ; 3) = 1
=> p + 1 chia hết cho 2.3= 6
a) Xét các trường hợp p nguyên tố:
* Xét p = 2 thì p2 + 8 = 22 + 8 = 12 (không là số nguyên tố, loại)
* Xét p = 3 thì p2 + 8 = 32 + 8 = 17 (là số nguyên tố, thỏa mãn). Khi đó p2 + 2 = 32 + 2 = 11 (là số nguyên tố, đpcm)
* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)
+) Nếu p = 3k + 1 thì p2 + 8 = (3k + 1)2 + 8 = 9k2 + 6k + 9 = 3 (3k2 + 2k + 3)\(⋮\)3 mà 3 (3k2 +2k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)
+) Nếu p = 3k + 2 thì p2 + 8 = (3k + 2)2 + 8 = 9k2 + 12k + 12 = 3 (3k2 + 6k + 4)\(⋮\)3 mà 3 (3k2 + 6k + 4) > 3 nên không là số nguyên tố (loại trường hợp này)
Vậy nếu p và p2 + 8 là các số nguyên tố thì p2 + 2 là số nguyên tố (đpcm)
b) Xét các trường hợp p nguyên tố:
* Xét p = 2 thì 8p2 + 1 = 8.22 + 1 = 33 (không là số nguyên tố, loại)
* Xét p = 3 thì 8p2 + 1 = 8.32 + 1 = 73 (là số nguyên tố, thỏa mãn). Khi đó 2p + 1 = 2.3 + 1 = 7 (là số nguyên tố, đpcm)
* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)
+) Nếu p = 3k + 1 thì 8p2 + 1 = 8(3k + 1)2 + 1 = 8(9k2 + 6k + 1) + 1 = 3(24k2 + 16k + 3)\(⋮\)3 mà 3(24k2 + 16k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)
+) Nếu p = 3k + 2 thì 8p2 + 1 = 8(3k + 2)2 + 1 = 8(9k2 + 12k + 4) + 1 = 3(24k2 + 32k + 11)\(⋮\)3 mà 3(24k2 + 32k + 11) > 3 nên không là số nguyên tố (loại trường hợp này)
Vậy nếu p và 8p2 + 1 là các số nguyên tố thì 2p + 1 là số nguyên tố (đpcm)
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k + 1 và 3k + 2 (k \(\in\)N*)
- Nếu p = 3k + 1 thì 5p + 1 = 5(3k + 1) + 1 = 15k + 5 + 1 = 15k + 6 \(⋮\) 3 là hợp số (loại)
- Nếu p = 3k + 2 thì 5p + 1 = 5(3k + 2) + 1 = 15k + 10 + 1 = 15k + 11 (thỏa mãn)
=> 7p + 1 = 7(3k + 2) + 1 = 21k + 14 + 1 = 21k + 15 \(⋮\)là hợp số (đpcm)
Cũng thế nhưng xét trực tiếp 3 số khác:
* Xét: p # 3
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3. 8p-1 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số
* Xét: p # 3
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3. 8p-1 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số