Cho a,b,c khác 0, biết c(a+b)=ab
Chứng tỏ a+b là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(a^2+b^2=c^2+d^2\)
<=> a2 +b2 +c2 +d2 = 2(c2 +d2)\(⋮2\)(1)
Mặt khác (a2 + b2 + c2 +d2) - (a+b+c+d)= a2 -a +b2 - b +c2 -c +d2-d= a(a-1)+b(b-1)+c(c-1)+d(d-1) \(⋮2\)(2)
Từ (1) và (2) suy ra a+b+c+d \(⋮2\)
mà a, b, c, d là các số tự nhiên khác 0 nên a+b+c+d>2. Do đó a+b+c+d là hợp số
Với a,b,c dương, ta có:
a/a+b > a/a+b+c
b/b+c > b/a+b+c
c/c+a > c/a+b+c
=> A > a/a+b+c + b/a+b+c + c/a+b+c => A>1. (1)
Ta lại có
A = a/a+b + b/b+c + c/c+a
= a+b-b/a+b + b+c-c/b+c + c+a-a/c+a
= 1-b/a+b + 1-c/b+c + 1-a/c+a
= 3-(b/a+b + c/b+c + a/c+a) = 3-B
Tương tự phần chứng minh trên, ta có
b/a+b > b/a+b+c
c/b+c > c/a+b+c
a/a+c > a/a+b+c
=> B > b/a+b+c + c/a+b+c + a/a+b+c => B>1
mà A = 3-B
=> A < 2 (2)
Từ (1) và (2) => 1<A<2
Mà không có số tự nhiên nào ở giữa 1 và 2 => A không là số tự nhiên